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We establish a Liouville comparison principle for entire sub- and super-solutions of the
equation (∗) wt −�p(w) = |w|q−1 w in the half-space S = R

1+ ×R
n , where n � 1, q > 0 and

�p(w) := divx(|∇x w|p−2∇x w), 1 < p � 2. In our study we impose neither restrictions on
the behaviour of entire sub- and super-solutions on the hyper-plane t = 0, nor any growth
conditions on their behaviour or on that of any of their partial derivatives at infinity. We
prove that if 1 < q � p − 1 + p

n , and u and v are, respectively, an entire weak super-
solution and an entire weak sub-solution of (∗) in S which belong, only locally in S, to the
corresponding Sobolev space and are such that u � v , then u ≡ v . The result is sharp. As
direct corollaries we obtain both new and known Fujita-type and Liouville-type results.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous établissons un critère de comparaison de type de Liouville pour des sous- et super-
solutions entières de l’équation (∗) wt −�p(w) = |w|q−1 w dans le demi-espace S = R

1+ ×
R

n , où n � 1, q > 0 et �p(w) := divx(|∇x w|p−2∇x w), 1 < p � 2. Dans notre étude, nous
n’imposons ni des restrictions sur le comportement des sous- ou super-solutions entières
sur le hyper-plan t = 0, ni des conditions de croissance sur le comportement à l’infini de
ces solutions ou de leurs dérivées partielles. Nous démontrons que si 1 < q � p − 1 +
p
n , et u et v constituent, respectivement, une super-solution faible entière et une sous-
solution faible entière de (∗) dans S qui appartiennent, localement en S, à l’espace de
Sobolev approprié, et qui sont telles que u � v , alors u ≡ v . Ce résultat est précis. Comme
corollaires immédiats, nous obtenons des nouveaux résultats, ainsi que des résultats connus
de type Fujita et Liouville.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and definitions

The purpose of this work is to obtain a Liouville comparison principle of elliptic type for entire weak sub- and super-
solutions of the equation
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wt − �p(w) = |w|q−1 w (1)

in the half-space S = (0,+∞)×R
n , where n � 1 is a natural number, q > 0 is a real number and �p(w) := ∑n

i=1
d

dxi
Ai(∇w),

with Ai(ξ) = |ξ |p−2ξi for all ξ = (ξ1, . . . , ξn) ∈ R
n and p > 1, defines the well-known p-Laplacian operator. Under entire

sub- and super-solutions of (1) we understand sub- and super-solutions of (1) defined in the whole half-space S, and under
Liouville theorems of elliptic type we understand Liouville-type theorems which, in their formulations, have no restrictions
on the behaviour of sub- or super-solutions to the parabolic equation (1) on the hyper-plane t = 0. We would also like to
underline that we impose no growth conditions on the behaviour of sub- or super-solutions of (1), as well as of all their
partial derivatives, at infinity.

Definition 1. Let n � 1, p > 1 and q > 0. A function u = u(t, x) defined and measurable in S is called an entire weak super-
solution of Eq. (1) in S if it belongs to the function space Lq,loc(S), with ut ∈ L1,loc(S) and |∇xu|p ∈ L1,loc(S), and satisfies
the integral inequality

∫
S

[
utϕ +

n∑
i=1

|∇xu|p−2uxi ϕxi − |u|q−1uϕ

]
dt dx � 0 (2)

for every non-negative function ϕ ∈ C∞(S) with compact support in S, where C∞(S) is the space of all functions defined
and infinitely differentiable in S.

Definition 2. A function v = v(t, x) is an entire weak sub-solution of (1) if u = −v is an entire weak super-solution of (1).

2. Results

Theorem 1. Let n � 1, 2 � p > 1 and 1 < q � p −1+ p
n , and let u be an entire weak super-solution and v an entire weak sub-solution

of (1) in S such that u � v. Then u ≡ v in S.

The result in Theorem 1, which evidently has a comparison principle character, we term a Liouville-type comparison
principle, since, in the particular cases when u ≡ 0 or v ≡ 0, it becomes a Liouville-type theorem of elliptic type, respectively,
for entire sub- or super-solutions of (1).

Since in Theorem 1 we impose no conditions on the behaviour of entire sub- or super-solutions of Eq. (1) on the hyper-
plane t = 0, we can formulate, as a direct corollary of Theorem 1, a comparison principle, which in turn one can term a
Fujita comparison principle, for entire weak super- and sub-solutions u and v of the Cauchy problem, with possibly different
initial data for u and v , for Eq. (1) in S. It is clear that in the particular cases when u ≡ 0 or v ≡ 0, it becomes a Fujita-type
theorem, respectively, for entire sub- or super-solutions of the Cauchy problem for Eq. (1).

Note that the result in Theorem 1 is sharp and that the hypotheses on the parameter p in Theorem 1 in fact force p
to be greater than 2n

n+1 . The sharpness of the result for q > p − 1 + p
n � 1 follows, for example, from the existence of non-

negative self-similar entire solutions to (1) in S, which was shown in [1]. Also, there one can find a Fujita-type theorem on
the non-existence of non-negative entire solutions to the Cauchy problem for (1), which was obtained as a very interesting
generalisation of the famous blow-up result in [2] to quasilinear parabolic equations. For 0 < q � 1, it is evident that the
function u(t, x) = et is a positive entire classical super-solution of (1) in S.

We also would like to note that similar results to that in Theorem 1 for solutions of semilinear parabolic and elliptic
inequalities were obtained in [3] and [4].

3. Sketch of proofs

In what follows,

ω = p(q − 1)

q − p + 1
(3)

and

P (R) = {
(t, x) ∈ S: t2/ω + |x|2 < R2/ω

}
for all R > 0. It is clear that 0 < ω � 2 for 1 < p � 2 and that if R > 0 then

volume of P (R) � cR
n+ω
ω , (4)

with c some positive constant which depends possibly only on n and ω.
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Proof of Theorem 1. By the well-known inequality(|u|q−1u − |v|q−1 v
)
(u − v) � 21−q|u − v|q+1

which holds for every q � 1 and all u, v ∈ R
1, we obtain from (2) the relation∫

S

[
(u − v)tϕ +

n∑
i=1

ϕxi

(|∇xu|p−2uxi − |∇x v|p−2 vxi

)]
dt dx � 21−q

∫
S

(u − v)qϕ dt dx, (5)

which holds for every non-negative function ϕ ∈ C∞(S) with compact support in S. Let τ > 0 and R > 0 be real numbers.
Let η : [0,+∞) → [0,1] be a C∞-function which has the non-negative derivative η′ and equals 0 on the interval [0, τ ]
and 1 on the interval [2τ ,+∞), and let ζ : [0,+∞) × R

n → [0,1] be a C∞-function which equals 1 on P (R/2) and 0 on
{[0,+∞) × R

n} \ P (R). Let ϕ(t, x) = (w(t, x) + ε)−νζ s(t, x)η2(t), where w(t, x) = u(t, x) − v(t, x), ε > 0 and the positive
constants s > 1 and ν ∈ (0, p − 1) will be chosen below. Substituting the function ϕ in (5) and then integrating by parts we
arrive at

− s

1 − ν

∫
P (R)

(w + ε)1−νζtζ
s−1η2 dt dx − 2

1 − ν

∫
P (R)

(w + ε)1−νζ sη′η dt dx

− ν

∫
P (R)

n∑
i=1

wxi

(|∇xu|p−2uxi − |∇x v|p−2 vxi

)
(w + ε)−ν−1ζ sη2 dt dx

+ s

∫
P (R)

n∑
i=1

ζxi

(|∇xu|p−2uxi − |∇x v|p−2 vxi

)
(w + ε)−νζ s−1η2 dt dx

≡ I1 + I2 + I3 + I4 � 21−q
∫

P (R)

wq(w + ε)−νζ sη2 dt dx. (6)

First, observing that I3 is non-positive, we estimate I4 in terms of I3 using the fact, which is a key point in our proof, that
for 1 < p � 2 the p-Laplacian operator satisfies the so-called α-monotonicity condition (see, e.g., [5]) with α = p. This in
our case consists mostly of the fact that there exists a positive constant K such that the coefficients Ai , i = 1, . . . ,n, of the
p-Laplacian operator satisfy the inequality(

n∑
i=1

(
Ai

(
ξ1) − Ai

(
ξ2))2

)α/2

� K
(

n∑
i=1

(
ξ1

i − ξ2
i

)(
Ai

(
ξ1) − Ai

(
ξ2)))α−1

for all pairs ξ1, ξ2 ∈ R
n and α = p, provided 1 < p � 2. As a result, we have

|I4| �
∫

P (R)

c1|∇xζ |
(

n∑
i=1

wxi

(|∇xu|p−2uxi − |∇x v|p−2 vxi

)) p−1
p

(w + ε)−νζ s−1η2 dt dx. (7)

Here we use the symbols ci , i = 1, . . . ,6, to denote constants depending possibly on n, p, q, s or ν but not on R , ε or τ .
Further, estimating the integrand on the right-hand side of (7) by Young’s inequality we arrive at

|I4| � ν

2

∫
P (R)

n∑
i=1

wxi

(|∇xu|p−2uxi − |∇x v|p−2 vxi

)
(w + ε)−ν−1ζ sη2 dt dx

+
∫

P (R)

c2(w + ε)p−1−ν |∇xζ |pζ s−pη2 dt dx. (8)

Now, observing that I2 in (6) is also non-positive, we obtain from (6) and (8) the relation∫
P (R)

c2(w + ε)1−ν |ζt |ζ s−1η2 dt dx +
∫

P (R)

c2(w + ε)p−1−ν |∇xζ |pζ s−pη2 dt dx

�
∫

wq(w + ε)−νζ sη2 dt dx +
∫ n∑

i=1

wxi

(|∇xu|p−2uxi − |∇x v|p−2 vxi

)
(w + ε)−ν−1ζ sη2 dt dx. (9)
P (R) P (R)
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Estimating both integrands on the left-hand side of (9) by Young’s inequality we obtain

1

4

∫
P (R)

(w + ε)q−νζ sη2 dt dx + c3

∫
P (R)

|ζt |
q−ν
q−1 ζ

s− q−ν
q−1 η2 dt dx

+ 1

4

∫
P (R)

(w + ε)q−νζ sη2 dt dx + c3

∫
P (R)

|∇xζ | p(q−ν)
q−p+1 ζ

s− p(q−ν)
q−p+1 η2 dt dx

�
∫

P (R)

wq(w + ε)−νζ sη2 dt dx +
∫

P (R)

n∑
i=1

wxi

(|∇xu|p−2uxi − |∇x v|p−2 vxi

)
(w + ε)−ν−1ζ sη2 dt dx. (10)

In (10), passing to the limit as ε → 0 as justified by Lebesgue’s theorem we arrive at

c4

∫
P (R)

|ζt |
q−ν
q−1 ζ

s− q−ν
q−1 η2 dt dx + c4

∫
P (R)

|∇xζ | p(q−ν)
q−p+1 ζ

s− p(q−ν)
q−p+1 η2 dt dx �

∫
P (R)

wq−νζ sη2 dt dx. (11)

Now, for arbitrary (t, x) ∈ S and R > 0, we choose in (11) the function ζ = ζ(t, x) of the form

ζ(t, x) = ψ

(
t2/ω + |x|2

R2/ω

)
,

where 0 < ω � 2 is given by (3) and ψ : [0,∞) → [0,1] is a C∞-function which equals 1 on [0,2− 2
ω ] and 0 on [1,∞) and

is such that the inequalities

|ζt | � c5 R−1 and |∇xζ | � c5 R− 1
ω (12)

hold. Further, from (11), where we choose the parameter s sufficiently large, and (12) we obtain∫
P (R/2)

wq−νη2 dt dx � c6 R
n+p

p − q−ν
q−1 . (13)

It is easy to calculate that for 1 < q < p − 1 + p
n and sufficiently small ν , the inequality

n + p

p
− q − ν

q − 1
< 0 (14)

holds. Now, using (14) and passing on the right-hand side of (13) to the limit as R → +∞, we arrive at the relation∫
S

wq−νη2 dt dx = 0

with q > ν , which in turn, letting the parameter τ in the definition of the function η go to zero, yields that w(t, x) = 0 a.e.
in S. Thus, we have proved Theorem 1 for 1 < q < p − 1 + p

n . Treating the case when q = p − 1 + p
n requires estimating the

integral∫
P (R)

wqζ sη2 dt dx,

and this can be done using the relation (10) in the framework of the approach which we have used above. �
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