

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Harmonic Analysis

Uniqueness sets for unbounded spectra

Ensembles d'unicité pour des spectres non-bornés

Alexander Olevskii^a, Alexander Ulanovskii^b

^a School of Mathematics, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

^b Stavanger University, N-4036 Stavanger, Norway

ARTICLE INFO

Article history: Received 13 May 2011 Accepted 17 May 2011 Available online 12 June 2011

Presented by Jean-Pierre Kahane

ABSTRACT

For every set $S \subset \mathbb{R}$ of finite measure, we construct a system of exponentials $\{e^{i\lambda t}\}_{\lambda \in \Lambda}$ which is complete in $L^2(S)$ and such that the set of frequencies Λ has the critical density $D(\Lambda) = \operatorname{mes}(S)/2\pi$.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Pour tout ensemble $S \subset \mathbb{R}$ de mesure finie nous construisons un système d'exponentielles $\{e^{i\lambda t}\}_{\lambda \in \Lambda}$ qui est total dans $L^2(S)$ et dont l'ensemble des fréquences a la densité critique, à savoir mes $(S)/2\pi$.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \mathcal{F} be some space of continuous functions on the real line \mathbb{R} . A set $\Lambda \subset \mathbb{R}$ is called a uniqueness set for \mathcal{F} if

$$f \in \mathcal{F}, \quad f|_{\Lambda} = 0 \quad \Rightarrow \quad f = 0.$$

In what follows we consider *discrete* uniqueness sets for the classical Paley–Wiener spaces PW_S . Given a set $S \subset \mathbb{R}$ of finite measure, the space PW_S consists of all functions f which are the (inverse) Fourier transform

$$f(x) = \int_{\mathbb{R}} e^{itx} F(t) \, \mathrm{d}t \tag{1}$$

of functions $F \in L^2(\mathbb{R})$, F = 0 a.e. outside *S*. Since the measure of *S* is finite, we have $F \in L^1(\mathbb{R})$, and so every function $f \in PW_S$ is continuous.

Let S = [a, b] be an interval. Assume that a set $\Lambda \subset \mathbb{R}$ is uniformly discrete (u.d.):

$$\inf_{\lambda,\lambda^*\in\Lambda,\,\lambda\neq\lambda^*}|\lambda-\lambda^*|>0.$$

and assume that Λ is regularly distributed in the sense that the uniform density $D(\Lambda)$ exists:

 $\operatorname{Card}(\Lambda \cap (x, x+r)) = rD(\Lambda) + o(r)$ uniformly on x as $r \to \infty$.

E-mail addresses: olevskii@post.tau.ac.il (A. Olevskii), Alexander.Ulanovskii@uis.no (A. Ulanovskii).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.05.010

Then the condition $D(\Lambda) \ge |S|/2\pi$ is necessary while the condition

$$D(\Lambda) > \frac{1}{2\pi} |S| \tag{2}$$

is sufficient for Λ to be a uniqueness set for PW_S , where |S| denotes the measure of S. This can be shown by standard complex variable techniques. A deep result of Beurling and Malliavin [3] states that the same is true for an arbitrary set Λ provided the uniform density is replaced with a certain exterior density (Beurling–Malliavin density).

In the case of disconnected spectra *S*, condition (2) ceases to be sufficient already when *S* is the union of two intervals. This is where the arithmetics of Λ comes into the play. For example, one can easily check that $\Lambda = \mathbb{Z}$ is not a uniqueness set for PW_S , where $S = [0, \epsilon] \cup [2\pi, 2\pi + \epsilon]$, $\epsilon > 0$. On the other hand, Landau [4] discovered that certain small perturbations of \mathbb{Z} produce uniqueness sets for PW_S whenever *S* is a finite union of intervals satisfying $|S_{\pi}| < 2\pi$, where S_{π} denotes the "projection" of *S* onto $[-\pi, \pi]$:

$$S_{\pi} := (S + 2\pi\mathbb{Z}) \cap [-\pi, \pi].$$

In [5], Theorem 3.1 we proved that every "exponentially small" perturbation of \mathbb{Z} is a uniqueness for PW_S where *S* is an *arbitrary* bounded set satisfying $|S_{\pi}| < 2\pi$. This result remains true for unbounded sets *S* with a moderate accumulation at infinity. However, if this accumulation is too fast then the functions of the corresponding Paley–Wiener space loose analyticity, and the result is no longer true, see [5].

In the present Note we show that for every set *S* in \mathbb{R} of finite measure, the Paley–Wiener space *PW*_S possesses a uniformly discrete uniqueness set:

Theorem 1. Assume $S \subset \mathbb{R}$, $|S| < \infty$ and $|S_{\pi}| < 2\pi$. There is a u.d. set $\Lambda \subset \mathbb{R}$, $D(\Lambda) = 1$, which is a uniqueness set for PW_S.

Corollary. For every set $S \subset \mathbb{R}$, $|S| = 2\pi$, there is a u.d. set $\Lambda \subset \mathbb{R}$, $D(\Lambda) = 1$, which is a uniqueness set for PW_S .

2. Proof

Here we sketch the proof of the results. Set $\mathbb{Z}_n := \mathbb{Z} \cap \{|t| \ge n\}$ and $\mathbb{T} := (-\pi, \pi)$.

Lemma 1. Let w (a weight) be an L^1 -function on a set $A \subset \mathbb{T}$, $|A| < 2\pi$, $w(t) \ge 1$. Then there is a sequence of disjoint sets $A_j \subset \mathbb{Z}$, $j \in \mathbb{N}$, such that:

- (i) Every exponential system $\{e^{i\lambda t}\}_{\lambda \in \Lambda_i}$ is complete in $L^2(w, A)$.
- (ii) No neighboring integers belong to different subsets Λ_i .

Proof. Set $X := L^2(w, A)$. One can identify X^* with $L^2(1/w, A)$ and check that X^* is embedded in $L^1(A)$. So, if $g \in X^*$ is orthogonal to $E(\mathbb{Z}_n)$, then g = 0 a.e. Hence, $E(\mathbb{Z}_n)$ is complete in $X, n \in \mathbb{N}$.

To construct Λ_j , we run an induction process, where on *m*-th step one adds to $\Lambda_{j(m)}$ a "large" finite set of integers, so that there is a trigonometric polynomial with these frequencies which approximates an exponential function $e^{il(m)t}$ with an error $\epsilon(m)$. The couple (j, l) runs over \mathbb{Z}^2 infinitely many times and $\epsilon(m) \to 0$ as $m \to \infty$. \Box

Proof of Theorem 1. 1. Define a weight *w* to be the multiplicity function $w(t) := \text{Card}\{k \in \mathbb{Z}: t + 2\pi k \in S\}$, where $t \in \mathbb{T}$. Set $A_j := \{t \in \mathbb{T}: w(t) = j\}, j = 1, 2, ...$

2. Take any function $f \in PW_S$ and let *F* be the Fourier transform in (1). Then

$$F(t) = \sum_{k \in \mathbb{Z}} F_k(t + 2\pi k), \qquad F_k(t) := F(t - 2\pi k) \cdot \mathbf{1}_{\mathbb{T}}(t),$$

where the functions $\{F_k\}$ are supported by S_{π} .

3. Set

$$G(a,t) := \sum_{k \in \mathbb{Z}} e^{i2\pi ka} F_k(t), \quad 0 \le a < 1, \ t \in \mathbb{T}.$$
(3)

One may check that *G* belongs to $L^2(1/w, S_{\pi})$ for every $a \in [0, 1)$. A simple calculation shows that for each $v \in \mathbb{Z}$ we have

$$f(\nu+a) = \int_{\mathbb{T}} G(a,t)e^{i(\nu+a)t} dt.$$
(4)

4. By Lemma 1, there exist disjoint sets $\Lambda(n, j) \subset \mathbb{Z}$, $n = 1, 2, ..., 0 \leq j < n$, so that each system of exponentials $E(\Lambda(n, j))$ is complete in the space $X := L^2(w, S_{\pi})$. Set

$$\Lambda_n := \bigcup_{j=0}^n \left(\Lambda(n,j) + \frac{j}{n} \right); \qquad \Lambda := \bigcup_{n \in \mathbb{N}} \Lambda_n.$$

By Lemma 1(ii), we may assume that Λ is uniformly discrete and $D(\Lambda) = 1$.

5. Now we prove that Λ is a uniqueness set for PW_S . Assume $f(x) = 0, x \in \Lambda$. Given n and j, we use (4) for every $\nu \in \Lambda(n, j)$. Due to completeness of $E(\Lambda(n, j))$ in X, we get: G(j/n, t) = 0 a.e. Since G is continuous with respect to a for almost all $t \in S_{\pi}$, we see that G(a, t) = 0 on (0, 1). From (3) we conclude that $F_k(t) = 0$ a.e. on \mathbb{T} for every k. Hence, f = 0 which proves Theorem 1. \Box

Proof of Corollary. The only case which is not covered by Theorem 1 is when $|S| = |S_{\pi}| = 2\pi$. Then one can check that $\Lambda = \mathbb{Z}$ is a uniqueness set for PW_S . \Box

3. Remarks

1. The results above hold also for the spaces \hat{L}_{S}^{p} , p > 1, of all functions f defined in (1), where $F \in L^{p}(\mathbb{R})$ and F = 0 a.e. outside S.

2. Let B_S^q denote the Bernstein's type spaces of all continuous functions $f \in L^q(\mathbb{R})$ whose spectrum, in the distributional sense, lies in *S* (cf. Section 6 in [7]). The following result shows a sharp contrast between these spaces and the Paley–Wiener spaces:

For every q > 2 there is an (unbounded) closed set $S \subset \mathbb{R}$ of Lebesgue measure zero such that no u.d. set Λ is a uniqueness set for B_S^q .

For $q = \infty$ this follows directly from Theorem 3 in [7] (see also Theorem 3.1 in [6]). The latter results can be extended to the case q > 2.

3. Given two sets *S*, *Q* in \mathbb{R} of finite measure, it is well known that there is no non-trivial L^2 -function *f* supported by *S* so that \hat{f} is supported by *Q* (see [1,2]). By slightly changing the proof of Theorem 1, one can obtain the following extension of this result:

Suppose $S, Q \subset \mathbb{R}$, $|S|, |Q| < \infty$. There is a u.d. set $\Lambda \subset \mathbb{R}$ such that $\Lambda \cap Q = \emptyset$, $D(\Lambda) = |S|/2\pi$ and Λ is a uniqueness set for PW_S .

4. One may extend the results (and proofs) of this Note to functions of several variables. For example, the following is true:

For every set $S \subset \mathbb{R}^n$ of finite Lebesgue measure there is a u.d. set $\Lambda \subset \mathbb{R}^n$, $D(\Lambda) = |S|/(2\pi)^n$, which is a uniqueness set for the space PW_S .

5. A set $\Lambda \subset \mathbb{R}$ is called a sampling set for the space PW_S if there is a constant C > 0 such that

$$\int_{\mathbb{R}} |f(x)|^2 dx \leq C \sum_{\lambda \in \Lambda} |f(\lambda)|^2, \text{ for every } f \in PW_S.$$

It is well known that when S is a *bounded* set, then the space PW_S possesses a u.d. sampling set A. The following open question seems to be interesting: Is it true that PW_S possesses a u.d. sampling set for every set S of finite measure?

References

- [1] W.O. Amrein, A.M. Berthier, On support properties of L^p-functions and their Fourier transforms, J. Funct. Anal. 24 (3) (1977) 258–267.
- [2] M. Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1) (1985) 180-183.

- [4] H.J. Landau, A sparse regular sequence of exponentials closed on large sets, Bull. Amer. Math. Soc. 70 (1964) 566-569.
- [5] A. Olevskii, A. Ulanovskii, Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal. 18 (3) (2008) 1029-1052.
- [6] A. Olevskii, A. Ulanovskii, Interpolation in Bernstein and Paley-Wiener spaces, J. Funct. Anal. 256 (10) (2009) 3257-3278.
- [7] A. Olevskii, A. Ulanovskii, Approximation of discrete functions and size of spectrum, St. Petersburg Math. J. 21 (2010) 1015–1025.

^[3] A. Beurling, P. Malliavin, On the closure of characters and the zeros of entire functions, Acta Math. 118 (1967) 79–93.