
C. R. Acad. Sci. Paris, Ser. I 349 (2011) 625–628
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Analysis/Dynamical Systems

Hausdorff dimension of the multiplicative golden mean shift

Dimension de Hausdorff du shift de Fibonacci multiplicatif

Richard Kenyon a, Yuval Peres b, Boris Solomyak c

a Department of Mathematics, Brown University, Box 1917, 151 Thayer Street, Providence, RI 02912, USA
b Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
c Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 May 2011
Accepted 17 May 2011
Available online 12 June 2011

Presented by Jean-Pierre Kahane

We compute the Hausdorff dimension of the “multiplicative golden mean shift” defined as
the set of all reals in [0,1] whose binary expansion (xk) satisfies xkx2k = 0 for all k � 1,
and show that it is smaller than the Minkowski dimension.
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r é s u m é

Nous calculons la dimension de Hausdorff du « shift de Fibonacci multiplicatif », c’est-à-dire
l’ensemble des nombres réels dans [0,1] dont le développement en binaire (xk) satisfait
xkx2k = 0 pour tout k � 1. Nous montrons que la dimension de Hausdorff est plus petite
que la dimension de Minkowski.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A classical result of Furstenberg [5] says that if X is a closed subset of [0,1], invariant under the map Tm : x �→ mx
(mod 1), then its Hausdorff dimension equals the Minkowski (box-counting) dimension, which equals the topological en-
tropy of Tm|X divided by logm. A simple example is the set ΨG := {x = ∑∞

k=1 xk2−k: xk ∈ {0,1}, xkxk+1 = 0 for all k} for

which we have dimH (ΨG) = dimM(ΨG) = log2(
1+√

5
2 ) (the subscript G here stands for the “Golden Ratio”). Instead, we

consider the set

ΞG :=
{

x =
∞∑

k=1

xk2−k: xk ∈ {0,1}, xkx2k = 0 for all k

}
which we call the “multiplicative golden mean shift”. The reason for this term is that the set of binary sequences cor-
responding to the points of ΞG is invariant under the action of the semigroup of multiplicative positive integers N

∗:
Mr(xk) = (xrk) for r ∈ N. Fan, Liao, and Ma [4] showed that dimM(ΞG) = ∑∞

k=1 2−k−1 log2 Fk+1 = 0.82429 . . . , where Fk
is the k-th Fibonacci number: F1 = 1, F2 = 2, Fk+1 = Fk−1 + Fk , and raised the question of computing the Hausdorff dimen-
sion of ΞG .

Theorem 1.1. We have dimH (ΞG) < dimM(ΞG). In fact,

dimH (ΞG) = − log2 p = 0.81137 . . . , where p3 = (1 − p)2, 0 < p < 1. (1)
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Our manuscript [6] contains substantial generalizations of this result, extending it to a large class of “multiplicative
subshifts”. We state one of them at the end of the paper.

Although the set ΞG is on the real line, it appears to have a strong resemblance with a class of self-affine sets on the
plane, namely, the Bedford–McMullen “carpets” [1,7], for which also the Hausdorff dimension is typically smaller than the
Minkowski dimension. However, this seems to be more of an analogy than a direct link.

An additional motivation to study the multiplicative subshifts comes from questions on multifractal analysis of multiple
ergodic averages raised in [4]. Perhaps, the simplest non-trivial case of such multifractal analysis is the study of the sets
Aθ := {x = ∑∞

k=1 xk2−k: xk ∈ {0,1}, limn→∞ 1
n

∑n
k=1 xkx2k = θ}. It is not hard to show that dimH (A0) = dimH (ΞG), which

we compute in Theorem 1.1. With more work, our method can be used to compute the Hausdorff dimension of Aθ , but the
details are beyond the scope of this note.

In this paper, we focus on ΞG to explain our ideas and methods in the simplest possible setting. To conclude the intro-
duction, we should mention that the dimensions of some analogous sets, e.g., Ξ̃ = {x = ∑∞

k=1 xk2−k: xk ∈ {0,1}, xkx2kx3k = 0
for all k} are so far out of reach.

2. Proof of Theorem 1.1

It is more convenient to work in the symbolic space Σ2 = {0,1}N , with the metric �((xk), (yk)) = 2−min{n: xn �=yn}. It is
well known that the dimensions of a compact subset of [0,1] and the corresponding set of binary digit sequences in Σ2
are equal (this is equivalent to replacing the covers by arbitrary intervals with those by dyadic intervals). Thus, it suffices to
determine the dimensions of the set XG —the collection of all binary sequences (xk) such that xkx2k = 0 for all k. Observe
that

XG = {
ω = (xk)

∞
k=1 ∈ Σ2: (xi2r )∞r=0 ∈ ΣG for all i odd

}
(2)

where ΣG is usual (additive) golden mean shift: ΣG := {(xk)
∞
k=1 ∈ Σ2, xkxk+1 = 0, ∀k � 1}.

We will use the following well-known result; it essentially goes back to Billingsley [2]. We state it in the symbolic space
Σ2 where [u] denotes the cylinder set of sequences starting with a finite “word” u and xn

1 = x1 . . . xn .

Proposition 1. (See [3].) Let E be a Borel set in Σ2 and let ν be a finite Borel measure on Σ2 .

(i) If lim infn→∞(− 1
n ) log2 ν[xn

1] � s for ν-a.e. x ∈ E, then dimH (E) � s.

(ii) If lim infn→∞(− 1
n ) log2 ν[xn

1] � s for all x ∈ E, then dimH (E) � s.

Given a probability measure μ on ΣG , we can define a probability measure on XG by

Pμ[u] :=
∏

i�n, i odd

μ[u| J (i)], where J (i) = {
2r i

}∞
r=0 (3)

and u| J (i) denotes the “restriction” of the word u to the subsequence J (i). It turns out that this class of measures is
sufficiently rich to compute dimH (XG).

For k � 1 let αk be the partition of ΣG into cylinders of length k. For a measure μ on Σ2 and a finite partition α, denote
by Hμ(α) the μ-entropy of the partition, with base 2 logarithms: Hμ(α) = −∑

C∈α μ(C) log2 μ(C). Define

s(μ) :=
∞∑

k=1

Hμ(αk)

2k+1
. (4)

Proposition 2. Let μ be a probability measure on ΣG . Then dimH (XG) � s(μ).

Proof. We are going to demonstrate that for every 
 ∈ N,

lim inf
n→∞

− log2 Pμ[xn
1]

n
�


∑
k=1

Hμ(αk)

2k+1
for Pμ-a.e. x. (5)

Then, letting 
 → ∞ and using Proposition 1(i) will yield the desired inequality. Fix 
 ∈ N. By a routine argument, to verify
(5) we can restrict ourselves to n = 2
r, r ∈ N. In view of (3), we have

Pμ

[
xn

1

]
�


∏
k=1

∏
n
k <i� n

k−1 , i odd

μ
[
xn

1| J (i)
]
. (6)
2 2
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Note that xn
1| J (i) is a word of length k for i ∈ (n/2k,n/2k−1], with i odd, which is a beginning of a sequence in ΣG . Thus,

[xn
1| J (i)] is an element of the partition αk . The random variables x �→ − log2 μ[xn

1| J (i)] are i.i.d. for i ∈ (n/2k,n/2k−1], with i
odd, and their expectation equals Hμ(αk), by the definition of entropy. Note that there are n/2k+1 odds in (n/2k,n/2k−1].
Fixing k, 
 with k � 
 and taking n = 2
r, r → ∞, we get an infinite sequence of i.i.d. random variables. Therefore, by a
version of the Law of Large Numbers,

∀k � 
,
∑

n
2k <i� n

2k−1 , i odd

− log2 μ[xn
1| J (i)]

(n/2k+1)
→ Hμ(αk) as n = 2
r → ∞, for Pμ-a.e. x. (7)

By (6) and (7), for Pμ-a.e. x,

− log2 Pμ[xn
1]

n
�


∑
k=1

1

2k+1

∑
n

2k <i� n
2k−1 , i odd

− log2 μ[xn
1| J (i)]

n/2k+1
→


∑
k=1

Hμ(αk)

2k+1
.

This confirms (5), so the proof is complete. �
Proof of the lower bound for the Hausdorff dimension in Theorem 1.1. Let s := sup{s(μ): μ is a probability measure
on ΣG }. By Proposition 2, we have dimH (XG) � s, and we will prove that this is actually an equality. To this end, we
specify a measure which will turn out to be “optimal”. This measure is Markov, but non-stationary. It could be “guessed”
or derived by solving the optimization problem (which also yields that the optimal measure is unique). However, for the
proof of dimension formula it suffices to produce the answer. Let μ be a Markov measure on ΣG , with initial probabilities

(p,1 − p), and the matrix of transition probabilities P = (P (i, j))i, j=0,1 =
(

p 1−p
1 0

)
. Using elementary properties of entropy,

it is not hard to see that s(μ) = H(p)
2 + ps(μ)

2 + (1−p)s(μ)
4 , whence s(μ) = 2H(p)

3−p . Maximizing over p yields s(μ) = 2 log2
p

1−p ,

and comparing this to s(μ) = 2H(p)
3−p we get

p3 = (1 − p)2, s(μ) = − log2 p. (8)

Combined with Proposition 2, this proves the lower bound for the Hausdorff dimension in (1). �
Proof of the upper bound for the Hausdorff dimension in Theorem 1.1. Denote by Ni(u) the number of symbols i in a
word u. By the definition of the measure μ, we obtain for any u = u1 . . . uk ∈ {0,1}n ,

μ[u] = pu1 P (u1, u2) · . . . · P (uk−1, uk) = (1 − p)N1(u1...uk) pN0(u1...uk)−N1(u1...uk−1). (9)

Indeed, the probability of a 1 is always 1 − p, whereas the probability of a 0 is p, except in those cases when it follows
a 1, and then has probability equal to 1. In view of (9), by the definition of the measure Pμ on XG , we have Pμ[xn

1] =
(1 − p)N1(xn

1) pN0(xn
1)−N1(xn/2

1 ) for any x ∈ XG and n even. Using that (1 − p)2 = p3 and N0(xn
1) = n − N1(xn

1), we obtain that

Pμ

[
xn

1

] = pn pN1(xn
1)/2−N1(xn/2

1 ).

Let a
 = − 1
n log2 Pμ[xn

1] for n = 2
 . Then a
 = − log2 p · (1 + 1
2 [ N1(xn

1)

n − N1(xn/2
1 )

n/2 ]). Now we see that the average of a
 ’s
“telescopes”:

a1 + · · · + a




= − log2 p ·

(
1 + 1

2


[
N1(x2


1 )

2

− N1(x1)

])
→ − log2 p, as 
 → ∞.

It follows that

lim inf

→∞ a
 = lim inf


→∞ 2−

(− log2 Pμ

[
x2


1

])
� − log2 p = s,

for every x ∈ XG , so dimH (XG) � s by Proposition 1(ii). �
3. Generalization

Here we state a generalization of Theorem 1.1 to the case of arbitrary multiplicative subshifts of finite type; the proof
can be found in [6].

Theorem 3.1.

(i) Let A be a 0–1 primitive m × m matrix (i.e. some power of A has only positive entries). Consider ΞA = {x = ∑∞
k=1 xkm−k: xk ∈

{0, . . . ,m − 1}, A(xk, x2k) = 1 for all k}. Then dimH (ΞA) = 1
2 logm

∑m−1
i=0 ti , where (ti)

m−1
i=0 is the unique vector satisfying t2

i =∑m−1 A(i, j)t j , ti > 1, i = 0, . . . ,m − 1.
j=0
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(ii) The Minkowski dimension of ΞA exists and equals dimM(ΞA) = ∑∞
k=1 2−k−1 logm(Ak−11,1) where 1 = (1, . . . ,1)T ∈ R

m. We
have dimH (ΞA) = dimM(ΞA) if and only if all row sums of A are equal.
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