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We check the McKay conjecture on character degrees for the case of symplectic groups
over the field with two elements Sp2n(2) and the prime 2. Then we check the inductive
McKay condition (Isaacs–Malle–Navarro) for Sp4(2m) and all primes.
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r é s u m é

Nous vérifions la conjecture de McKay sur les degrés de caractères dans le cas des
groupes symplectiques sur le corps à deux éléments Sp2n(2) et du nombre premier 2. Nous
montrons ensuite la condition de McKay inductive (Isaacs–Malle–Navarro) pour Sp4(2m) et
tous les nombres premiers.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

If G is a finite group and � is a prime number, denote by Irr�′ (G) the set of irreducible characters of G with degree
prime to �. The McKay conjecture asserts that

∣
∣Irr�′(G)

∣
∣ = ∣

∣Irr�′
(
NG(P )

)∣∣

for P a Sylow �-subgroup of G . This conjecture has gained new interest since appearance of Isaacs–Malle–Navarro’s theorem
reducing it to a related conjecture on quasi-simple groups (see [7]). The latter has been checked for all quasi-simple groups
not of Lie type.

Among groups of Lie type and for � being the defining prime, the group Sp2n(2) had remained open (see [13]). This
is the main purpose of this note (see Corollary 4 below). The method is by use of the Jordan decomposition of characters
for the Irr�′ (G) side (see Proposition 2), while, for the |Irr�′ (NG(P ))| side, we compute the abelian quotient of the Sylow
2-subgroup (Proposition 3), the latter an exception pointed by [6].

In a joint work with B. Späth, we developed some general methods which also cover the case Sp2n(2m) (see [2]) for
n > 2, m > 1. Here, we present however the case of Sp4(2m) which requires some ad hoc analysis (see Section 3).

Notations. When � is a prime and n � 1 an integer, one denotes by n� the greatest power of � dividing n and n�′ := n/n� . If
H is a finite group and X ⊆ Irr(H), one denotes X�′ := X ∩ Irr�′ (H).

If H acts on a set Y , one denotes by Y H the subset of fixed points. For finite reductive groups GF and their characters,
we follow the notations of [4].
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2. Odd character degrees for Sp2n(2)

Let us denote by F the algebraic closure of F2 the field with 2 elements. Let n � 2 be an integer, let G = Sp2n(F) with
Frobenius endomorphism F0 : G → G squaring matrix entries. Let G = GF0 = Sp2n(F2), also denoted by Sp2n(2) or Sp(2n,2).

2.1. The global case

We refer to [4] for the notion of unipotent characters.
Let n � 2 be an integer. For our first lemma, see [9] 6.8.

Lemma 1. Sp2n(2) has five unipotent characters of odd degrees.

Proposition 2. Sp2n(2) has 2n+1 characters of odd degrees.

Proof. Recall G = Sp2n(F) with Frobenius endomorphism F0 : G → G squaring matrix entries. Let G = GF0 = Sp2n(2) (part of
case (a) in [8] Section 8). Note that G has (trivial) connected center.

By [8] p. 164, F being of characteristic 2, there is an isogeny between G and its dual G∗ inducing a bijection between
rational semi-simple elements with isomorphism of centralizers of corresponding elements. This, along with property (A)
of [8] 7.8 shows that Irr(G) is in bijection with the disjoint union of the E (CG(s),1)’s for s ranging over the semi-simple
conjugacy classes of G (see [8] 8.7.6). Through this Jordan decomposition, the degrees are multiplied by |G∗ F0 |2′ |CG(s)|−1

2′ ,
so |Irr2′ (G)| = ∑

s |E (CG(s),1)2′ |, a sum over the semi-simple classes of G .
Characteristic polynomials provide a bijection between the classes of semi-simple elements of Sp2n(2) and the set of

self dual polynomials f ∈ F2[X] of degree 2n. If s corresponds with f , then CG(s) ∼= Sp2m(2) × Cs where Cs is a product of
finite linear groups and 2m is the multiplicity of (X − 1) in f . For a given m < n, the number of such classes is 2n−m−1.
This is because one has to count the polynomials f = (X − 1)2m g with a self dual g(X) = 1 + a1 X + · · · + an−m−1 Xn−m−1 +
an−m Xn−m + an−m−1 Xn−m+1 + · · · + a1 X2n−2m−1 + X2n−2m such that g(1) 	= 0. Such g ’s are 2n−m−1, corresponding to the
choice of coefficients at degrees 1,2, . . . ,n − m − 1 since g(1) = an−m has to be = 1. For m = n (central element) there is 1
conjugacy class (s = 1).

The unipotent characters of finite reductive groups of type A in characteristic 2 are of even degrees except the
trivial character (see for instance [6] or [9] 6.8). Then Lemma 1 implies that each semi-simple class s correspond-
ing with m as above satisfies |E (CG(s),1)2′ | = 5 for m � 2, |E (CG(s),1)2′ | = 1 otherwise. So the above indeed implies
|Irr2′(G)| = 5.

∑n−1
m=2 2n−m−1 + 5 + 2n−2 + 2n−1 = 5.2n−2 + 3.2n−2 = 2n+1. �

2.2. The local case

We use the description of Sp2n(F2) ⊂ GL2n(F2) as the subgroup of matrices u such that t u
( 0 J

J 0

)
u = ( 0 J

J 0

)
where J

denotes the matrix with coefficients (δi,n+1− j)1�i, j�n and u �→ t u denotes transposition (see [4] 15.2). Let U := {( x xs J
0 J x̄ J

) |
x ∈ V , s ∈ Symn} where Symn (resp. V ) is the set of symmetric (resp. upper triangular unipotent) matrices of order n with
coefficients in F2, and one denotes x̄ = t x−1. We have

Proposition 3. U is a Sylow 2-subgroup of G = Sp2n(2) for n � 2. Moreover NG(U ) = U and U/[U , U ] is of order 2n+1 .

Corollary 4. McKay conjecture (on character degrees) is satisfied in G = Sp2n(2) for the prime 2 (n � 2). That is, the normalizer of any
Sylow 2-subgroup of G has the same number of characters of odd degrees as G itself.

Proof. By Proposition 3, the irreducible characters of NG(U ) = U of odd degrees are exactly the linear characters of U . So
their number is the cardinality of U/[U , U ], that is 2n+1 thanks to Proposition 3 again. Combining with Proposition 2 gives
our claim. �
Proof of Proposition 3. Note that U equals the group of elements over F2 of a rational Borel subgroup (see [4] 15.2), so it
equals its normalizer by the axioms of finite BN-pairs which are satisfied by this group. Thus our first claim.

Note also the semi-direct decomposition U ∼= Symn �V for the action of V on Symn given by x.s = xst x for x ∈ V ,
s ∈ Symn . Since Symn is abelian and since the Sylow 2-subgroup V of GLn(F2) is known to satisfy |V /[V , V ]| = 2n−1 (see
for instance [4] p. 129 and [6]), our claim about U/[U , U ] reduces to show that Symn /[Symn, V ] is of order 4. So we have
to prove that the sum S ′ = ∑

x∈V θx(Symn) of images of endomorphisms θx : s �→ xst x − s of Symn has codimension 2.
For 1 � i, j � n, let us denote by Eij the usual elementary matrix of order n. We have Eij + E ji + Eii ∈ S ′ for any 1 � i <

j � n, by computing θx(s) for s = E jj , x = In + Eij . We also have Eij + E ji ∈ S ′ for any 1 � i < j � n with (i, j) 	= (n − 1,n)

(taking s = E jk + Ekj and x = In + Eik for some k > i, k 	= j). This shows that S ′ contains the Eij + E ji ’s for 1 � i < j � n with
(i, j) 	= (n − 1,n), along with E11, E22, . . . , En−2,n−2 and En−1,n + En,n−1 + En−1,n−1. This makes a subspace of codimension
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2 in Symn , a supplement subspace being generated by En−1,n−1 and En,n . The action of V on the quotient is easily checked
to be trivial (one just has to check the images of En−1,n−1 and En,n by θx for x = In + Eij — which we just did above —
since the latter generate V as a group, using again the fact that the field has two elements). So this subspace is indeed the
sum of the images of all the θx ’s for x ∈ V . �
Theorem 5. Let n � 3 be an integer. Then Sp2n(2) is a simple group that satisfies the conditions of [7] Section 10 for all prime numbers.

Proof. When n = 3, Sp6(2) satisfies the theorem by [10] 4.1. When n > 3, Sp2n(2) has trivial Schur multiplier and trivial
outer automorphism group (see [5]), so that the checking required by [7] just amounts to the McKay conjecture itself (see
[7] 10.3). For � = 2, it is Corollary 4. In the case of other primes, this is a consequence of Malle’s parametrization [9] 7.8
along with Späth’s extensibility results (see [11] 1.2, [12] 1.2, 8.4). �
3. Sp4(2m)

Theorem 6. Let m � 2 be an integer. Then Sp4(2m) is a simple group that satisfies the conditions of [7] Section 10 for all prime
numbers.

We keep F as above and let G = Sp4(F). We denote by T0 its diagonal torus and (F,+) → G, t �→ xα(t) its minimal
unipotent T0-stable subgroups indexed by the T0-roots α. The Weyl group W := NG(T0)/T0 is generated by the classes s1,
s2 of the permutation matrices in GL4(F) associated with the permutations (1,2), (3,4) and (2,3), respectively.

Denote by F ′
0 the automorphism of G = Sp4(F) which sends xα(t) to xα′ (t2) if α is short (i.e. its associated reflection is

conjugated with s1), to xα′ (t) otherwise, and where α �→ α′ is the permutation of roots corresponding to the swap of s1
and s2, see [3] 12.3.3. Note that F0 = (F ′

0)
2 (notation of Section 1). Denote F = F m

0 , so that Sp4(2m) = Sp4(F2m ) = GF .

Proof of Theorem 6. The group G = Sp4(2m) (m � 2) is simple with trivial Schur multiplier and cyclic outer automorphism
group generated by F ′

0 (see [5]). Then the conditions of [7] Section 10 amount to find for each prime � dividing |G| a proper
subgroup N < G containing NG(P ) for P a Sylow �-subgroup of G and such that σ(N) = N and |Irr�′ (G)σ | = |Irr�′ (N)σ |
for any σ ∈ NAut(G)(P ) (see [1] Section 3). The case of � = 2 is also done in [1], so we assume that � is odd dividing
(24m − 1)(22m − 1) = |Sp4(2m)|2′ . The order of 2m mod � is e ∈ {1,2,4}. Let Se be a Sylow φe-torus of G. We have that
Te := CG(Se) is a maximal torus of T0-type we = 1, s1s2s1s2, or s1s2 according to e being 1, 2 or 4 (for types of maximal
F -stable tori, and latter Levi subgroups, we refer to [4] p. 113).

Arguing as in the proof of [9] 5.14, any Sylow �-subgroup P has a unique maximal toral elementary abelian subgroup
whose normalizer N in G is then also N := NG(Se) = NG(Te). It is stable by any automorphism σ such that σ(P ) = P . From
what has been said about possible σ ’s, and noting that N has an abelian normal subgroup TF

e with �′ index, we see that
we must just prove that

∣∣Irr�′(G)F ′ ∣∣ = ∣∣Irr(N)xF ′ ∣∣ (E)

for any F ′ a power of F ′
0 and some x ∈ G is such that F ′(Se) = Sx

e .
Bringing (Te, F ) to (T0, we F ) by conjugacy with some g ∈ G such that g−1 F (g) ∈ weT0, we may rewrite the above as

∣∣Irr�′(G)F ′′ ∣∣ = ∣∣Irr
(
NG(T0)

we F )F ′′ ∣∣ (E′)

when F ′′ is an isogeny commuting with we F and is in the same class as F ′ mod inner automorphisms of G .
Recall Malle’s bijection Irr�′ (G)

∼→ Irr�′ (N) which, among other properties, sends components of RG
Te

θ to components of

IndN
Te

θ for relevant θ ∈ Irr(TF
e ) (see [9] Section 7.1).

Let us first look at regular characters ±RG
T (θ). They are of degree �′ if and only if T can be taken as Te = CG(Se) (see

[9] 6.6). Such a character is fixed by F ′ if and only if F ′(Te, θ) and (Te, θ) are GF -conjugate (see [1] Section 2.1.2). This is
equivalent to xF ′(θ) being NG(Se)-conjugate to θ ([9] 5.11). This is also the criterion for IndN

TF (θ) being xF ′-fixed as can be
seen easily from the definition of induced characters. Thus our claim (E).

Let us now turn to unipotent characters. From [9] 6.5, we know that they have to be in E (GF ,Te,1), the set of irreducible
characters occurring in the generalized character RG

Te
1. So we have to check that E (GF ,Te,1)F ′

�′ and Irr(N/TF
e )F ′

have same
cardinality.

As for the first set, one knows that among the six unipotent characters of Sp4(2m), only the two that are of generic
degree 1

2 q(q2 + 1) are not fixed by F ′
0 (see [9] 3.9.a). Those are among unipotent characters of degree prime to � only when

e = 1 or 2. So it suffices to check that all characters of N/TF
e but 2 are fixed by xF ′ in case e = 1 or 2 and F ′ is an odd

power of F ′
0, and that all are fixed otherwise.

In cases e = 1 or 2, w1 = 1, w2 = s1s2s1s2 both are fixed by F ′
0, so one may take F ′′ = F ′ in (E′) above. Recall that F ′

0
acts on W by permuting s1 and s2. The group W is dihedral of order 8, so F ′

0 induces an automorphism of order two of
W ab, so two linear characters out of four are F ′ -fixed, while the character of degree two is fixed. Hence our claim for any
0
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odd power of F ′
0. In the case of an even power, the action is trivial, as expected. In the case e = 4, one may take w4 = s1s2

and F ′′ = (s1 F ′
0)

a when F ′ = (F ′
0)

a . Then the action of F ′′ on (NG(T0)/T0)
w4 F = CW (w4) is trivial.

We now assume E (G, s)F ′
�′ 	= ∅ for an s that is neither central nor regular. The group CG(s) is always a Levi subgroup

of G (see proof of Proposition 2 above) and by [9] 6.5 it must contain a Sylow φe-torus. A proper F -stable Levi subgroup of
G can contain a φ1-Sylow for types (L{s1}, F ) and (L{s2}, F ) and a φ2-Sylow for types (L{s1}, s2s1s2 F ) and (L{s2}, s1s2s1 F ). In
each case the corresponding finite group has two unipotent characters, the trivial and the Steinberg characters, of distinct
degrees, so that for an s whose class is F ′-stable with such a centralizer in the dual, E (G, s) has two elements with distinct
degrees, so F ′ acts trivially on E (G, s).

The corresponding statement on the local side is as follows: if θ is a non-regular non-central linear character of Twe F
0 ,

then IndNG(T0)we F

Twe F
0

θ has two elements both F ′′-fixed if F ′′(θ) ∈ NG(T0)
we F .θ . This holds because non-regularity implies

(NG(T0)
we F )θ /Twe F

0 is of order 2, but then F ′′ can act only trivially on it. �
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