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We prove a uniqueness result for the stochastic transport linear equation (STLE), without
any W 1,1 or BV hypothesis on the coefficient, which is needed for the corresponding
deterministic equation. We use Wiener chaos decomposition to pass from the STLE to a
deterministic second-order transport equation with uniqueness property.
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r é s u m é

On prouve un résultat d’unicité pour l’équation de transport linéaire stochastique (STLE),
sans aucune hypothèse de type W 1,1 ou BV sur le coefficient, qui est nécessaire pour
l’équation déterministe correspondante. On utilise la décomposition en chaos de Wiener
pour passer de la STLE à une équation de transport du second ordre déterministe avec la
propriété d’unicité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

On a probability space (Ω, F , P ), we consider the stochastic transport linear equation (STLE)

dut + b · ∇ut dt +
d∑

k=1

∂kut ◦ dW k
t = 0, (1)

where W is a d-dimensional Brownian motion with respect to a certain right-continuous completed filtration (Ft)t , b is a
deterministic field on R

d , u is a random function defined on [0, T ] × R
d .

The classical theory for the deterministic transport linear equation (i.e. without the stochastic integral), developed by
DiPerna and Lions [6] and Ambrosio [1] and based on renormalized solutions, gives existence and uniqueness in the class
of weak L∞ solutions under hypotheses (a bit simplified for brevity) b ∈ L∞(Rd) ∩ BVloc(R

d) and div b ∈ L∞(Rd); such
hypotheses cannot be relaxed too much. As Flandoli et al. have shown, the introduction of noise allows some improvements:
existence and uniqueness hold asking b Hölder continuous, div b ∈ Lq for q > 2 [7] or b ∈ L∞(Rd) ∩ BVloc(R

d), div b ∈
L1(Rd) [3].

In this article we prove a new uniqueness result for STLE; the direct hypotheses on b, namely b ∈ L∞(Rd), are weaker
than those of the previous (stochastic) results, with the price of using the Brownian filtration and of a stronger integrability
assumption on div b. Our approach is based on Wiener chaos decomposition, which allows to reduce the STLE to the asso-
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ciated Kolmogorov equation (namely the equation obtained by taking the expectation), which has uniqueness property for
the Laplacian term. This approach was inspired by the article [9] by Le Jan and Raimond, where Wiener chaos is used to
prove uniqueness for generalized stochastic flows.

Note that this result is false in the deterministic case: we cite two counterexamples at the end. Relations with pathwise
uniqueness for the corresponding SDE are briefly recalled.

2. Wiener chaos decomposition and the main result

We define the operators B f = b · ∇ f , Dk f = ∂k f , K f = tr(D2 f ) = � f ; we use B∗ , D∗
k , K ∗ for their formal adjoint

operators in L2(Rd).

Definition 2.1. If u0 ∈ L p , a weak L p solution of (1) on R
d is a function u ∈ L p([0, T ] × R

d × Ω), progressively measurable
with respect to (Ft)t , such that, for every φ ∈ C∞

c (Rd), ur B∗φ is in L1([0, T ] × R
d) for a.e. ω ∈ Ω , ur D∗φ is a continuous

semi-martingale with respect to (Ft)t , and it holds

∫

Rd

utφ dx =
∫

Rd

u0φ dx +
t∫

0

∫

Rd

ur
1

2
K ∗φ dx dr −

t∫
0

∫

Rd

ur B∗φ dx dr −
d∑

k=1

t∫
0

∫

Rd

ur D∗
kφ dx dW k

r . (2)

Eq. (2) is the weak formulation of (1), where we have used the link between Stratonovich integral and Ito integral (since
ur D∗φ is a continuous semi-martingale).

Definition 2.2. Let P be the Wiener measure on the space Ω = C([0,+∞[,R)d . We write �n(T ) := {(t1, . . . , tn)|0 � t1 �
· · · tn � T }. For f ∈ L2(�n(T ))nd we define the stochastic iterated integral

∫
�n(T )

f (r)dn W (r) :=
∑

k1,...,kn

T∫
0

rn∫
0

· · ·
r2∫

0

fk1,...,kn(r1, . . . , rn)dW k1(r1), . . . , dW kn (rn). (3)

The integral above is an injective isometry between the Hilbert spaces L2(�n(T ))nd and L2(Ω, FT , P ).
We write Π0 = R, Πn = {∫

�n(T )
f (r)dn W (r)| f ∈ L2(�n(T ))nd} for n ∈ N

+ (this space is called n-th Wiener chaos). The
following theorem is well known (see, e.g., [4]):

Theorem 2.3. Take (Ft)t as the natural completed Brownian filtration. Then L2(Ω, FT , P ) has the following orthogonal decomposition
(called Wiener chaos decomposition): L2(Ω, FT , P ) = ⊕∞

n=0 Πn.

From now on, (Ft)t will be the natural completed Brownian filtration.
The main idea is the following. The stochastic (standard) integral acts like a shift for the Wiener chaos, i.e. formula (4).

Then, if u is a solution of (1), Q nu solves an equation which is (2) but for the stochastic part, which is driven by Q n−1u and
thus can be regarded as a random external force, fixed a priori by inductive hypothesis. So the equation for Q nu is morally
the Kolmogorov equation for (2).

Lemma 2.4. Let X be an (Ft)t -progressively measurable process, with values in R
d, such that E[∫ T

0 |X(t)|2 dt] < +∞. Let Q n be the
projector on the n-th Wiener chaos. Then

Q n+1

T∫
0

X(t)dW (t) =
T∫

0

Q n X(t)dW (t). (4)

Proof. Straightforward. �
Hypotheses 2.5. b is in L2

loc(R
d)d and div b is in L2

loc(R
d).

We now state the main result.

Theorem 2.6. Suppose (Ft)t is the Brownian filtration. Suppose u0 in L2 (resp. L∞), suppose Hypotheses 2.5 and suppose uniqueness
in the class of weak L2 (resp. L∞) solutions for Kolmogorov equation

∂vt + B vt = 1
K vt . (5)
∂t 2
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Then there is uniqueness for (1) in the class of weak L2 (resp. L∞) solutions adapted to (Ft)t .

Proof. Let u be a solution of (1) with u0 = 0. By Wiener chaos decomposition, it is enough to show Q nu ≡ 0 for every
n ∈ N. We will prove it inductively.

Projecting Eq. (2) on the n-Wiener chaos, for Lemma 2.4 we obtain for every φ ∈ C∞
c

〈Q nut, φ〉 =
t∫

0

〈
Q nur,

(
1

2
K ∗ − B∗

)
φ

〉
dr −

∑
k

t∫
0

〈
Q n−1ur, D∗

kφ
〉
dW k

r , (6)

where we have posed Q −1 ≡ 0. By inductive hypothesis Q n−1u ≡ 0, this equation becomes Eq. (5), which has by hypothesis
uniqueness property among weak solutions. The proof in the L2 case is complete.

If u is an L∞ solution, we obtain, reasoning as above, that Q nu satisfies (5), but is not necessarily in L∞ . However, Q nut

is the iterated stochastic integral of a deterministic function ft , so
∫
�n(t) ft(s)g(s)dns is a weak L∞ solution of (5) for every

g ∈ L∞(�n(T )); thus f ≡ 0. We are done in the L∞ case. �
Remark 1. In the L∞ case, the result is valid also for b ∈ L1

loc(R
d) with div b ∈ L1

loc(R
d), since one can show that the integrals

in the proof make sense under these hypotheses.

3. The uniqueness result

In order to exploit Theorem 2.6, we want to find sufficient condition for uniqueness for Eq. (5).

Hypotheses 3.1. b is in L p(Rd)d ∩ L2
loc(R

d)d , div b is in Lq(Rd) ∩ L2
loc(R

d) for p ∈ ]d,+∞], q ∈ ]d/2,+∞].

Lemma 3.2. Under Hypotheses 3.1, Eq. (5) has uniqueness property in the class of weak L∞ solutions and in the class of weak L2

solutions.

Proof. Extending formula (2) for kernels φs,x(r, y) = (2π(s − r))−d/2 exp(−|x−y|2
2(s−r) ), we get, if t < s,

〈ut, φt〉 = 〈u0, φ0〉 +
t∫

0

〈
ur, (div b)φr

〉
dr +

t∫
0

〈ur,b · ∇φr〉dr. (7)

We fix u0 ≡ 0. In the L∞ case (the L2 case being similar), the RHS in (7) is bounded by

C
(‖div b‖Lq(Rd) + ‖b‖L p(Rd)

) t∫
0

‖ur‖L∞(Rd)(s − r)−α dr, (8)

with α = max{d/(2q), (1 + d/p)/2} ∈ ]0,1[ (since p > d and q > d/2). Now we let s → t , so that ‖ut‖L∞ is bounded by (8)
(with s replaced by t). We can conclude using classical Gronwall arguments. �
Corollary 3.3. Under Hypotheses 3.1, the STLE (1) has uniqueness property in the class of weak L2 solutions adapted to (Ft)t and in
the class of weak L∞ solutions adapted to (Ft)t .

Remark 2. Existence for such solutions is proved at least in the class of weak L∞ solutions, under more general hypotheses,
namely b ∈ L1

loc([0, T ] × R
d;R

d), div b ∈ L1
loc([0, T ] × R

d) [7].

Remark 3. In the L∞ case, Corollary 3.3 works also for b ∈ L∞([0, T ]; L p(Rd)d), div b ∈ L∞([0, T ]; Lq(Rd)), for some p > d,
q > d/2, with a similar proof and using Remark 1. The corresponding deterministic result does not hold: a counterexample
is due to Depauw ([5], even if uniqueness holds in a smaller class, see [2]). For this and the following example, also previous
results on regularization by noise do not apply.

Remark 4. Another counterexample can be adapted from the example in [6], at pages 541–543. More precisely, the drift
b is generated on a bounded ball by the following Hamiltonian: H(x1, x2) = −x1/|x2|1/2 if |x1| � |x2|1/2, H(x1, x2) = −x1 +
sgn(x1)[|x2|1/2 − 1] if |x1| > |x2|1/2. It can be shown, as in [6], that b ∈ L1

loc with div b = 0 and that the corresponding
equation has more than one solution. In the stochastic case uniqueness is restored, even if b does not satisfy Hypotheses 3.1:
one can prove an estimate like (8), using the scaling property |b(βx)| = |β|−1/2|b(x)| if |x1| � |x2|1/2.
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Remark 5. Existence and pathwise uniqueness have been proved for the SDE dXt = b(Xt) + dWt , when b is only in L p(Rd)

for some p > d [8]. However, we do not know a way to exploit this result to obtain uniqueness for weak solutions of STLE.
Indeed, the relation ut(Xt) = u0 holds with some regularity hypotheses on u (Remark 4 gives a deterministic counterexam-
ple). Furthermore, the hypothesis div b ∈ L1

loc is needed to give sense to Definition 2.1 and some integrability assumptions
on div b are required in many articles about the topic [1,6,3,7]. Nevertheless, some nontrivial links between SDE and STLE
could be possible; we plan to analyze it in a forthcoming paper.
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