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We investigate existence and uniqueness of duality solutions for a scalar conservation law
with a nonlocal interaction kernel. Following Bouchut and James (1999) [3], a notion of
duality solution for such a nonlinear system is proposed, for which we do not have unique-
ness. However we prove that a natural definition of the flux allows to select a solution for
which uniqueness holds.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons l’existence et l’unicité de solutions en dualité pour une loi de conserva-
tion scalaire avec un noyau d’interaction non-local. En suivant Bouchut et James (1999) [3],
une notion de solution en dualité pour un tel système non-linéaire est proposée pour la-
quelle nous n’avons cependant pas d’unicité. Dans ce travail nous prouvons alors qu’en
sélectionnant le flux, nous retrouvons un résultat d’existence et d’unicité des solutions me-
sures de notre système.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette note, nous nous intéressons à une loi de conservation scalaire faiblement non-linéaire du type (1). Ce système
gouverne l’évolution de la densité ρ d’une population sous l’effet d’un champ autoconsistant u. De tels systèmes sont
obtenus par exemple pour décrire la chimiotactie [6] ou la dynamique d’un gaz de particules [7]. La fonction a dans (1) est
une fonction régulière donnée. Il est dorénavant bien connu que pour de tels systèmes, les solutions régulières explosent en
temps fini [1], et donc le système doit être étudié dans un cadre mesure. Dans un tel cadre, il faut alors considérer que la
fonction a(u) est discontinue ; le produit de a(u) par ρ n’est donc a priori pas défini.

La notion de solutions en dualité (voir [2]) permet de donner un sens aux solutions d’une loi de conservation scalaire
linéaire (2) à coefficients discontinus. Quelques résultats importants pour la suite de la note sont rappelés dans la section 2.
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Il est notamment remarquable de souligner que lorsque la vitesse du flux satisfait la condition dite OSL (3), on peut définir
un flot correspondant. Il est alors possible de donner un sens aux solutions de (1) :

Définition 0.1. Un couple (ρ, u), ρ ∈ C(]0, T [; Mloc(R)) est une solution en dualité de (1) sur ]0, T [ s’il existe une fonction
borélienne b avec ∂xb � α ∈ L1

loc(0, T ) telle que

(i) pour tout 0 < t1 < t2 < T , ∂tρ + ∂x(bρ) = 0 au sens de la dualité sur ]t1, t2[,
(ii) on a ∂xu = ρ faiblement,

(iii) b = a(u) p.p.

Cependant, nous soulignons dans ce travail que l’unicité de telles solutions n’est pas assurée. Il paraît alors naturel de se
fixer le flux i.e. le produit de ρ par a(u). Le résultat obtenu dans la section 3 est alors le suivant :

Théorème 0.2. Soit ρ0 ∈ Mloc(R), ρ0 � 0. Il existe une unique solution en dualité (ρ, u) de (1) au sens de la définition 0.1 qui satisfait
la relation b̂ρ = ∂x A(u) où A est une primitive de a.

Une conséquence importante de ce résultat est que dans le cas où la fonction a est choisie de sorte que b = a(u) satisfait
la condition OSL (3), nous pouvons alors définir la solution par un flot. Enfin dans la dernière partie de cette note, nous
présentons quelques exemples d’applications de ce travail qui permettent de retrouver et d’étendre les résultats de [7] et [3].

1. Introduction

At a continuous level, many physical or biological systems are modelled thanks to scalar conservation laws. In this note
we will focus on a weakly nonlinear system of the kind:

∂tρ + ∂x
(
a(u)ρ

) = 0, ∂xu = ρ, (1)

where a is a given smooth function, a ∈ C0(R). This system is complemented with the initial data ρ(t = 0) = ρ0. We notice
that we can rewrite (1) as a single equation since we have u = H ∗ ρ where H is the Heaviside function and we recover
the so-called nonlocal aggregation equation. This model arises in several applications in physics and biology where a self-
consistent interaction field u governs the evolution of a density of population ρ . Then u is defined as u = −∂xφ where
φ is the interaction potential. For instance, in the modelling of cell movement by chemotaxis, φ is the concentration of
some chemical called chemo-attractant (when a is non-increasing) or chemo-repellent (when a is non-decreasing) which
drives the dynamics of individuals (bacteria). In gas dynamics, this model can be derived thanks to a high-field limit from
the Vlasov–Poisson–Fokker–Planck system [7], a non-increasing (resp. non-decreasing) a corresponds to the repulsive (resp.
attractive) case.

From a mathematical viewpoint, it is well known that in the attractive case, i.e. when a is non-increasing, finite time
blow-up of regular solutions for such system occurs (see e.g. [1] and references therein). Therefore one has to look for
solutions ρ which are measure-valued in space, which generates several difficulties, because the velocity a(u) turns out to
be discontinuous, so that the product in the divergence term is not well defined, and the corresponding flow has to be
defined cautiously. A recent approach consists in using techniques from optimal transport, see [4]. Another possibility is to
define a priori the product. For the Vlasov–Poisson–Fokker–Planck system, this has been done in [7].

The aim of this note is to interpret (2) as a linear conservation equation solved in the duality sense [2], the product
being defined afterwards, following the strategy introduced in [3] for pressureless gases. Therefore we recall in the next
section the notion of duality solutions and some useful results. In Section 3 we state and prove the main result concerning
existence and uniqueness of duality solutions of system (1). Section 4 is devoted to some examples of applications of this
result.

2. Duality solutions for linear equations

The notion of duality solutions was introduced in [2] to give a sense to linear conservation equations

∂tρ + ∂x(bρ) = 0, (2)

when the coefficient b can be discontinuous but satisfies the so-called one-sided Lipschitz (OSL) condition

∂xb(t, ·) � β(t) for β ∈ L1(0, T ) in the distribution sense. (3)

Duality solutions are defined as weak solutions, the test functions being specific Lipschitz solutions to the backward linear
transport equation

∂t p + b(t, x)∂x p = 0, p(T , ·) = pT ∈ Lip(R). (4)
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Definition 2.1.

(i) We say that a Lipschitz solution p to (4) is a reversible solution if p is locally constant on the set

Ve = {
(t, x) ∈ [0, T ] × R; ∃pe ∈ E , pe(t, x) �= 0

}
.

(ii) We say that ρ ∈ C([0, T ]; Mloc(R) − σ(Mloc, Cc)) is a duality solution to (2) if for any 0 < τ � T , and any reversible
solution p to (4) with compact support in x, the function t �→ ∫

R
p(t, x)ρ(t,dx) is constant on [0, τ ].

The most important facts for our purpose concerning duality solutions are gathered in the following theorem:

Theorem 2.2. (See Bouchut and James [2].)

(i) Given ρ0 ∈ Mloc(R), under the assumptions (3), there exists a unique ρ ∈ C([0,+∞[, Mloc(R)), duality solution to (2), such
that ρ(0, ·) = ρ0 .
Moreover, if ρ0 is nonnegative, then ρ(t, ·) is nonnegative for a.e. t � 0. And we have the mass conservation |ρ(t, ·)|(R) =
|ρ0|(R), for a.e. t ∈ ]0, T [.

(ii) Backward flow and push-forward: the duality solution satisfies

∀t ∈ [0, T ], ∀φ ∈ Cc(R),

∫

R

φ(x)ρ(t,dx) =
∫

R

φ
(

X(t,0, x)
)
ρ0(dx), (5)

where the backward flow X(s, t, x) is defined as the unique reversible solution to

∂t X + b(t, x)∂x X = 0, (t, x) ∈ ]0, s[ × R, X(s, s, x) = x.

(iii) There exists a bounded Borel function b̂, called universal representative of b, such that b̂ = b almost everywhere, and for any
duality solution ρ ,

∂tρ + ∂x(b̂ρ) = 0 in the distributional sense. (6)

Remark 1. A similar notion of duality solution for the transport equation ∂t u + b∂xu = 0 is available, and ρ is a duality
solution of (2) iff u = ∫ x

ρ is a duality solution to transport equation (see [2]).

We shall need also the following result whose proof can be found in [3] (Theorems 3.1 and 3.2):

Theorem 2.3. Let f ∈ C1(R). Let M be an entropy solution to the conservation equation

∂t M + ∂x f (M) = 0,

with non-decreasing initial datum M0 . Then ρ := ∂xM is a duality solution to

∂tρ + ∂x(bρ) = 0

where we can choose b = f ′(M) a.e. Moreover, for all t ∈ ]0,+∞[, ∂xb � 1/t and its universal representative b̂ satisfies ∂x f (M) =
b̂∂xM.

3. Duality solutions for weakly nonlinear equations

We introduce the following notion of duality solution for the coupled system (1), inspired by the strategy used in [3] for
pressureless gases (see also Section 4.2 below):

Definition 3.1. We say that (ρ, u) is a duality solution of (1) on ]0, T [ if there exists a bounded Borel function b with
∂xb � α ∈ L1

loc(0, T ) such that

(i) for all 0 < t1 < t2 < T , ∂tρ + ∂x(bρ) = 0 in the sense of duality on ]t1, t2[,
(ii) we have ∂xu = ρ in the weak sense,

(iii) b = a(u) almost everywhere.

We underline at once the fact that this definition does not lead to uniqueness as it stands. Indeed, assume that a is a
non-increasing C1 function on R and take for initial data ρ0 = δx0 , a Dirac measure in x0 ∈ R. Looking for a solution as a
Dirac mass δx1(t) , thanks to Remark 1 we solve the transport equation with coefficient a(H(x − x1(t))), where H denotes
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the Heaviside function. Then (δx1(t), H(x − x1(t))) is a duality solution of (1) in the sense of Definition 3.1, provided that
x1(0) = x0 and that the admissibility condition a(1) < x′

1(t) < a(0) holds. Thus we have an infinite family of duality solutions.
Therefore the main result of this note is to explain how a more precise description of the product bρ in the scalar

conservation equation allows to recover uniqueness. It is actually given in a very naive way by writing a(u)ρ = a(u)∂xu =
∂x A(u), where A is an antiderivative of a. This choice can be justified in a more rigorous way when the system (1) is
obtained as the hydrodynamic limit of a kinetic system, as it is the case both in [6] and [7]. It turns out that the previous
formal computation is correct at the kinetic level, so that the flux Jε := ∫

ξ fε(ξ)dξ , where fε is the distribution function of
particles, actually converges to J = ∂x A(u), which defines the flux of the conservation equation. The point now is to justify
that this can be used to solve the conservation equation in the duality sense.

Theorem 3.2. Let ρ0 ∈ Mloc(R), ρ0 � 0. There exists a unique duality solution (ρ, u) to the nonlocal interaction equation (1) in the
sense of Definition 3.1, which satisfies b̂ρ = ∂x(A(u)) where A is an antiderivative of a.

Moreover, if a is a non-increasing function (i.e. in the attractive case), there exists a flow associated to a(u), in other words, there
exists a Lipschitz function X such that ρ(t) = X(t)#ρ0 .

Proof. Let us denote by u the entropy solution of equation

∂t u + ∂x A(u) = 0, (7)

with initial data u0 := ∫ x
ρ0(dx). From Theorem 2.3, ρ := ∂xu is a duality solution of ∂tρ + ∂x(bρ) = 0 where we can choose

b = a(u) almost everywhere and it is the unique solution satisfying b̂ρ = ∂x A(u). Indeed if we have two such nonnegative
solutions ρ1 = ∂xu1 and ρ2 = ∂xu2, then u1 and u2 are monotonous solutions of (7). Thus they are entropy solutions of this
scalar equation and u1 = u2.

In the attractive case, the entropy solution u is non-decreasing. Therefore ρ := ∂xu is nonnegative and ∂xa(u) =
a′(u)∂xu � 0 since in the attractive case a is non-increasing. Thus the velocity field a(u) satisfies the OSL condition (3)
and from Theorem 2.2(ii) there exists a backward flow X such that (5) is satisfied.

In the general case, we can apply the classical Oleinik entropy condition and get that ∂xb � 1/t . Then the solution is
defined on all ]t1, t2[ for 0 < t1 < t2 < T and the flow cannot be defined up to 0. �
4. Examples

4.1. Positive chemotaxis

Eq. (1) for a non-increasing function a can be obtained from a hydrodynamical limit of a kinetic model describing positive
chemotaxis (see e.g. [5,6]). Thus from Theorem 3.2, there exists a flow X such that ρ = X#ρ0. Let us first come back to
the example in Section 3.1: we assume that a is a given non-increasing C1 function and take ρ0 = δx0 . Then we solve the
Riemann problem

∂t u + ∂x A(u) = 0, u(t = 0, x) = H(x − x0),

where A is a concave function. Then the entropy solution is given by u(t, x) = H(x − x1(t)) where the Rankine–Hugoniot
condition implies x′

1(t) = A(1) − A(0). Thus the unique duality solution in the sense of Theorem 3.2 is given by (ρ, u) =
(δx1(t), H(x − x1(t))) where x1(t) = x0 + (A(1) − A(0))t .

On the other hand, if we look for a solution in the form ρ(t) = δx1(t) , then u(t, x) = H(x − x1(t)). Integrating Eq. (6) we

get that b̂ρ = −∂t u = x′
1(t)δx1(t) . By deriving in the distribution sense A(u), we get that the definition of the product in

Theorem 3.2 b̂ρ = ∂x A(u) is satisfied if and only if x′
1(t) = A(1) − A(0), thus we recover the Rankine–Hugoniot condition.

Hence the definition of the product allows to select one solution among those found in Section 3.1. It gives more generally
the dynamic of aggregates, which are modelled by a sum of Dirac masses ρ0 = ∑

miδxi . A similar computation gives the
velocity x′

i(t) = (A(
∑i m j) − A(

∑i−1 m j))/mi . Notice that the velocity of each aggregate is defined by a local equation,
despite the fact that the initial equation is nonlocal. In the particular case where A is strictly concave, aggregates collapse
in finite time.

4.2. High-field limit of Vlasov–Poisson–Fokker–Planck

In [7], the authors prove that solutions to the Vlasov–Poisson–Fokker–Planck system converge in the high-field limit to
solutions of (1) where a(u) = u in the repulsive case and a(u) = −u in the attractive case. To do so, the authors define
a weak product ρu, which can be proved to coincide with the one used here. Applying Theorem 3.2 we can recover the
result stated in Theorem 2 of [7]: there exists a unique global in time solution of (1) in the distribution sense such that
the product ρu = ±u2/2. Moreover, in the attractive case, there exists a flow X such that ρ = X#ρ0, and the dynamics of
aggregates is similar to the one of chemotaxis. In the general case, the Oleinik entropy condition gives that ρ � 1/t . Finally,
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we notice that the result of [7] has been extended in two dimensions by Poupaud in [8] by using defect measures to define
the product of ρ by u. However, there is no uniqueness of solutions.

To conclude, we focus on the connection between pressureless gases and the Vlasov–Poisson–Fokker–Planck limit which
is mentioned in [7]. The pressureless gases system reads

∂tρ + ∂x(ρv) = 0, ∂t(ρv) + ∂x
(
ρv2) = 0. (8)

Bouchut and James in [3] introduced the notion of duality solution to (8):

Definition 4.1. We say that a couple (ρ,q), ρ,q ∈ C([0, T [; Mloc(R)), ρ � 0, is a duality solution to (8) if there exists
b ∈ L∞(]0, T [ × R) and α ∈ L1

loc(]0, T [) satisfying ∂xb � α in ]0, T [ × R such that

(i) for all 0 < t1 < t2 < T , we have in the sense of duality on ]t1, t2[ × R

∂tρ + ∂x(bρ) = 0, ∂tq + ∂x(bq) = 0;
(ii) b̂ρ = q.

The existence result for the Cauchy problem with initial data (ρ0,q0) strongly exploits the relationships between (8) and
the conservation law ∂t u + ∂x A(u) = 0, where ρ = ∂xu, q = ∂x A(u) and A is determined by ρ and q. Uniqueness follows if
A can be defined by the initial data, which enforces additional conditions on (ρ0,q0).

In the context of Vlasov–Poisson–Fokker–Planck, the function A is given: A(u) = −u2/2 (attractive case) or A(u) = u2/2
(repulsive case). Therefore we propose the following variant to the results of [3]:

Theorem 4.2. Let ρ0 ∈ Mloc(R), ρ0 � 0 and A ∈ C1(R). Define q0 = ∂x A(u0), where u0 = ∫ x
ρ0 . Then there exists a duality solution

(ρ0,q0) of the pressureless gases system (8) in the sense of Definition 4.1. Moreover this solution is the unique duality solution which
satisfies the relation b̂ρ = ∂x[A(u)], where u = ∫ x

ρ(dx).

This theorem is proved in the same way as Theorem 3.2. The solution to the high-field limit of the Vlasov–Poisson–
Fokker–Planck system obtained in [7] is therefore the unique duality solution to (8) given by Theorem 4.2 for the corre-
sponding A.
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