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Given q ∈ (0,1], we construct nonradial entire large solutions to the equation �u = uq

in R
N .
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Pour q ∈ (0,1], nous construisons des solutions globales, explosives, et non radiales de
l’équation �u = uq dans R

N .
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The starting point of this work is the following question, due to H. Brezis:

Question 1.1. (See [2].) For N � 2 and q ∈ (0,1], consider the equation

�u = uq − u−q−2 in R
N . (1)

Is it true that all (smooth positive) solutions such that u(x) → +∞ as |x| → +∞ are radial about some point in R
N ?

The main feature of the nonlinearity in the right-hand side of (1) is its sublinear growth at infinity: nontrivial solutions
only exist when q � 1, as follows from the classical works of J.B. Keller [6] and R. Osserman [7] (see also [3]).

Solutions blowing up at infinity are often called entire large solutions in the literature (ELS, for short). Indications that
there exist nonradial ELS to (1) abound: S. Taliaferro [8] observed that given a unit vector α = (α1, . . . ,αN ), the function

u(x) = cosh(α1x1) . . . cosh(αN xN)

is a nonradial ELS to

�u = u in R
N .

Using separation of variables and standard bifurcation theory, M.F. Bidaut-Véron and P. Grillot [1] constructed nonradial ELS
to the equation

�u = uq in R
N , (2)
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of the form

u(x) = r
2

1−q v(θ), where r = |x| and θ = x/r, (3)

for specific values of q ∈ (0,1]. As demonstrated by the authors of [1], solutions of the form (3) with v not a constant,
cannot exist for all values of q ∈ (0,1]. This does not rule out the possibility of solutions of a different form. In this note,
I construct nonradial solutions of a different nature, which exist for all q’s.

Theorem 1.2. Assume N � 2 and q ∈ (0,1]. There exists a positive smooth solution to (2) which is not radial about any point in R
N

and such that

lim|x|→+∞ u(x) = +∞.

As a simple extension, I obtain a negative answer to Brezis’s question:

Theorem 1.3. Assume N � 2, let a ∈ R, and let f be a C2 real valued function defined on the interval [a,+∞). Assume that f �≡ 0 is
nonnegative, nondecreasing, concave, and such that for some constant C > 0,

C f ′′(t) � f ′′(2t) � 1

C
f ′′(t), for all t � a. (4)

Then, there exists a C2 solution to

�u = f (u) in R
N (5)

which is not radial about any point in R
N and such that

lim|x|→+∞ u(x) = +∞.

Remark 1.4. As mentioned earlier, there are no solutions to (5) whenever f is positive and satisfies the Keller–Osserman
condition

+∞∫
dt√

2F (t)
< +∞, (6)

where F ′ = f . However, the equation

�u = ρ
(|x|) f (u) in R

N

can be solved for f satisfying (6), provided ρ decays fast enough at infinity. In a forthcoming paper [4], we shall demonstrate
that radial symmetry does hold for such equations. So, it would be interesting to know whether Theorem 1.3 remains true
for any positive nonlinearity which fails the Keller–Osserman condition. In that respect, the careful reader will see that the
proof I present below cannot work for slightly superlinear nonlinearities, such as f (t) = t ln(t)q , q < 2. Such nonlinearities
fail (6).

2. Proof of Theorem 1.2

From the discussion in the introduction, we can restrict to the case q ∈ (0,1). Let u0 be the unique radial solution of (2)
such that u0(0) = 1 and u′

0(0) = 0. It is well known (see e.g. [5]) that u0 is globally defined and blows up at infinity at a
fixed rate

lim
r→+∞ r−αu0(r) = L, (7)

where α = 2
1−q and L = [α(α + N − 2)]− 1

q−1 > 0. Integrating (2), we have

du0

dr
= r1−N

r∫
0

tN−1uq
0(t)dt,

from which it easily follows that

lim r−α+1 du0 = Lα. (8)

r→+∞ dr
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We are going to construct a solution of the form

u = u0 + ε(u1 + v), (9)

where

u1 = ∂u0

∂x1

solves the linearized equation

−�u1 + quq−1
0 u1 = 0 in R

N

and by (7)–(8),

u1 = ∂u0

∂x1
= du0

dr

x1

r
= o(u0), as |x| → +∞.

Eq. (2) is then equivalent to

−�v + quq−1
0 v = −1

ε

((
u0 + ε(u1 + v)

)q − uq
0 − quq−1

0 ε(u1 + v)
)

= ε
q(1 − q)

2

(
u0 + tε(u1 + v)

)q−2
(u1 + v)2 in R

N , (10)

where t = t(u0, u1, v, ε) ∈ [0,1].
To solve (10), we observe that v = 0 is a subsolution, while v = uq

0 + 1 solves

−�v + quq−1
0 v = q(1 − q)uq−2

0

(
du0

dr

)2

+ quq−1
0 .

It follows that for ε sufficiently small, v is a supersolution of (10).
Hence, for each R > 1, we may find (e.g. by monotone iteration) a function v = v R such that (10) holds in B R , v R = 0

on ∂ B R , and

0 = v � v R � v = uq
0 + 1 in B R .

By elliptic regularity, a sequence (v Rn ) converges in C2
loc(R

N ) to a solution v of (10) such that

0 � v � uq
0 + 1 in R

N .

In particular, v = o(u1), when x = (x1,0) and x1 → ±∞. So the function

u = u0 + ε(u1 + v)

solves (2) and cannot be radial about any point in R
N . �

3. Proof of Theorem 1.3

If f is constant, then a constant multiple of u(x) = |x|2 + x1 is the desired nonradial solution. Since f is nondecreasing
and concave, we may now assume that f ′ > 0. Take the radial solution u0 to (5) with initial values u0(0) = b > max(a,0),
u′

0(0) = 0. As follows from the work of J.B. Keller [6], u0 is globally defined, nondecreasing, and blows up at infinity.
Furthermore, the following estimate holds

1

N

√
2F (u0) � du0

dr
�

√
2F (u0), (11)

where F (t) = ∫ t
b f (s)ds. We look again for a solution of the form u = u0 + ε(u1 + v), where u1 = ∂u0/∂x1. That is, we seek

v solving

−�v + f ′(u0)v = −1

ε

[
f
(
u0 + ε(u1 + v)

) − f (u0) − f ′(u0)ε(u1 + v)
]

= −ε

2
f ′′(u0 + tε(u1 + v)

)
(u1 + v)2 in R

N , (12)

where t = t(u0, u1, v, ε) ∈ [0,1]. Since f is concave, v = 0 is a subsolution of (12). Now let v = f (u0) + 1. Then,

−�v + f ′(u0)v = − f ′′(u0)

(
du0

)2

+ f ′(u0).

dr
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By L’Hôpital’s rule,

lim+∞
f 2

2F
= lim+∞ f ′ =: l ∈ [0,+∞). (13)

Using (11), we deduce that

(u1 + v)2 � C

(
du0

dr

)2

for |x| � 1. (14)

By L’Hôpital’s rule again,

lim
t→+∞

2F (t)

t2
= lim+∞ f ′ = l ∈ [0,+∞).

Using (11) again, we deduce that

du0

dr
� Cu0. (15)

Collecting (14) and (15), it follows from our assumption (4) that

− f ′′(u0 + tε(u1 + v)
)
� −C f ′′(u0). (16)

From (14) and (16), we conclude that v is a supersolution to (12), provided ε > 0 is chosen sufficiently small. By monotone
iteration, we obtain a solution u = u0 + ε(u1 + v) of (5), where

0 � v � f (u0) + 1. (17)

In case l = 0, (17), (13), and (11) imply that v = o(u1) when x = (x1,0) and x1 → ±∞. So, u cannot be radial about any
point in R

N .
In case l > 0, we may always assume that l < 1

N2 , using the change of independent variable y = λx if necessary. It follows
from (17), (13), and (11) that

lim sup
|x1|→∞

v(x1,0)

|u1(x1,0)| < 1,

and so again, u cannot be radial about any point in R
N . �
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