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Let n � 5. In this Note, we explain how to determine the asymptotic behaviour of
the size of the set of rational points (a0 : . . . : an) ∈ Pn(Q ) (where a0, . . . ,an ∈ Z and
gcd(a0, . . . ,an) = 1) of bounded height maxi=0,...,n |ai | � B on the hyperplane

∑n
i=0 Xi = 0

such that ai is squareful for each i ∈ {0, . . . ,n} as B goes to infinity. (An integer a is called
squareful if the exponent of each prime divisor of a is at least two.) The main tool we will
use, is the (classical) Hardy–Littlewood circle method.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit n � 5. Dans cette Note, nous expliquerons comment on peut déterminer le
comportement asymptotique du nombre de points rationnels (a0 : . . . : an) ∈ Pn(Q )

(avec a0, . . . ,an ∈ Z et pgcd(a0, . . . ,an) = 1) de hauteur bornée maxi=0,...,n |ai | � B sur
l’hyperplan

∑n
i=0 Xi = 0 tels que ai est un entier puissant pour chaque i ∈ {0, . . . ,n},

lorsque B tend vers l’infini. (Un entier a est appelé puissant si pour chaque nombre premier
p divisant a, on a que p2 aussi divise a.) La méthode principale qu’on utilise ici est la
méthode du cercle de Hardy–Littlewood (classique).

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The problem we consider can be related to an unsolved question Campana posed when examining rational points on
orbifolds. A good overview and setup of the Campana program is given for example in [1,4] or [2].

In the easiest configuration, an orbifold consists of a Q-rational divisor

Δ =
N∑

i=1

(
1 − 1

mi

)
· [Pi]

on the projective line P1 over Q , where Pi ∈ P1(Q ) and mi ∈ {2,3, . . .} ∪ {∞} for every i ∈ {1, . . . , N}. We denote such an
orbifold by (P1,Δ). Considering rational points P on the projective line which ‘behave well’ with respect to Δ (namely such
that for each prime number p and each rational point Pi (supporting Δ) which intersects P above p, it holds that this
intersection number is at least mi ; for more details see e.g. [1, Section 2]), it follows from the Campana program that for
the specific case where Δ = 1/2 · [0] + 1/2 · [1] + 1/2 · [∞] it is predicted (but yet to be proved) that the size of the set of
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points (a0 : a1) ∈ P1(Q ) (where a0,a1 ∈ Z and gcd(a0,a1) = 1) such that a0, a1 and a0 + a1 = a2 are squareful integers and
max{|a0|, |a1|, |a2|} � B (we denote this set by (P1,Δ)(Q )�B ) will behave asymptotically as C · B1/2 for some constant C > 0
as B goes to infinity.

Generalizing to higher dimension and thus adding more variables, it is reasonable to expect that the size of the set
{(a0 : . . . : an−1) ∈ Pn−1(Q ) (where a0, . . . ,an−1 ∈ Z and gcd(a0, . . . ,an−1) = 1) for which a0, . . . ,an−1 and

∑n−1
i=0 ai = an are

squareful integers and maxi=0,...,n |ai| � B (analogously denoted as (Pn−1,Δ)(Q )�B ) will behave asymptotically as C · B(n−1)/2

for some constant C > 0 as B goes to infinity.
This is exactly what we will prove provided that n � 5. We will first determine an asymptotic formula, using the Hardy–

Littlewood circle method, for the size of the set Ma,t(B) of integral solutions (x0, . . . , xn, y0, . . . , yn) ∈ Z2n+2
0 (here, Z0 =

Z \ {0}) of the equation
∑n

i=0 ai x2
i y3

i = t that satisfy maxi=0,...,n |ai x2
i y3

i | � B and yi squarefree for each i ∈ {0, . . . ,n}, where
a0, . . . ,an, t ∈ Z are fixed, gcd(a0, . . . ,an) = 1 and

∏n
i=0 ai �= 0 (see Theorem 3.1). Next, we will give describe the asymptotic

behaviour of the cardinality of the set M1,0(B) with the additional condition gcd(xi yi, i = 0, . . . ,n) = 1 on the solutions;
we denote this set by M(B). Here, we will explain how we can bring this gcd condition into account using some kind of
Möbius inversion (Theorem 3.2). Finally, since a squareful integer can be written ‘uniquely’ as x2 y3 where y is squarefree
(recall that y squarefree is equivalent to the fact that μ2(|y|) = 1 where μ(·) is the Möbius function; furthermore, this
representation of a squareful integer is unique up to the sign of x), the points with nonzero coordinates in (Pn−1,Δ)(Q )�B ,
denoted by (Pn−1,Δ)(Q )+�B , corresponds to the set{(

x2
0 y3

0 : . . . : x2
n y3

n

) ∈ H(Q )
∣∣ xi, yi ∈ Z0, yi squarefree, gcd(xi yi, i = 0, . . . ,n) = 1 and max

i=0,...,n

∣∣x2
i y3

i

∣∣ � B
}

(1)

where H ⊂ Pn denotes the hyperplane defined by the equation X0 +· · ·+ Xn = 0. (We will identify these two sets from now
on.) Hence,

#
(
Pn−1,Δ

)
(Q )+�B = 1

2n+2
#M(B)

keeping in mind that in (Pn−1,Δ)(Q)+�B the xi are defined up to sign and, since we are considering projective points,
the n + 1-tuple (y0, . . . , yn) is also defined up to sign (as n + 1-tuple). From this, it follows that the asymptotic formula
for #M(B) will induce an asymptotic formula for #(Pn−1,Δ)(Q )+�B (and hence also for #(Pn−1,Δ)(Q )�B , since looking at
points with nonzero coordinates is simply an open condition and does not change the asymptotic formula).

2. Calculating #Ma,t(B)

First of all, let us fix the framework of the circle method.
Let T be R/Z. For 0 < Δ � 1, we define M(Δ,q,a) as the image in T of {α ∈ R: |α − a/q| < B(Δ−2)/2} with a,q ∈ Z and

M(Δ) =
⋃

1�a�q�BΔ/2

gcd(a,q)=1

M(Δ,q,a)

called the union of the major arcs and T \ M(Δ) = m(Δ) the union of the minor arcs. This definition is clearly dependent of
the choice of Δ, which we will have to determine properly for this technique to work.

The circle method calculates #Ma,t(B) by integrating an exponential sum over T , namely

#Ma,t(B) =
∫
T

∑
1�|ai x

2
i y3

i |�B
i=0,...,n

(
n∏

i=0

μ2(|yi|
))

e
(
α f (x, y)

)
dα,

where f (x, y) = ∑n
i=0 ai x2

i y3
i − t . (From now on, e(x) = exp(2π ix) for x ∈ R.) For the integrand of this integral, denoted by

E(α), it holds that E(α) = e(−αt)
∏n

i=0 Si(α) putting Si(α) = ∑
1�|ai x2 y3|�B μ2(|y|)e(αaix2 y3).

2.1. Major arcs

We will use the classical circle method, as described in detail in e.g. [5] or [3]. We can prove the following theorem:

Theorem 2.1. For n � 5, it holds, some constant δ > 0 and for 0 < Δ < 1/15, that

∫
M(Δ)

E(α)dα = Ca,t · B(n−1)/2 + O
(

B(n−1)/2−δ
)

with Ca,t = 2n+1
∑

(y ,...,y )∈Zn+1

(
n∏

i=0

μ2(|yi|
)) Sy,a,tIε∏n

i=0 |ai y3
i |1/2
0 n 0
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where (putting εi = sgn(ai yi))

Sy,a,t =
∞∑

q=1

∑
0< a

q �1
gcd(a,q)=1

q−(n+1)
∑

z∈(Z/qZ)n+1

e
((

af (z, y)
)
/q

)
and Iε =

+∞∫
−∞

dγ

∫
[0,1]n+1

e

(
γ

n∑
i=0

εi x
2
i

)
dx.

Our strategy to treat the integral is to first look at the equation f (x, y) = f y(x) = 0 with y fixed; afterwards we will
take the sum over all admitted y (keeping in mind that each yi has to be squarefree). So, fixing y and hence looking at the
diagonal equation f y(x) = 0, we can use the circle method in a well-known way to prove the following proposition:

Proposition 2.2. For n � 5, it holds that∫
M(Δ)

E y(α)dα = 2n+1Sy,a,tIε∏n
i=0 |ai y3

i |1/2
B(n−1)/2 + O

(
B(n−2)/4

lcm(y0, . . . , yn)3/2
+ B(Δ−2)(1−n)/4∏n

i=0 |ai y3
i |1/2

+
∑n

i=0 |ai y3
i |1/2∏n

i=0 |ai y3
i |1/2

B(n+5Δ−2)/2
)

(2)

with E y(α) = ∑
1/|ai y3

i |1/2�|xi |�Bai yi
i=0,...,n

e(α f y(x)).

Here, we first have to examine E y(α) for α ∈ M(Δ,q,a) from which we then can derive the expression (2) by calculating
the integral of E y(α) over M(Δ,q,a) and afterwards summing over all admitted a and q.

For this proposition to make sense, we have to check that the coefficient of the main term converges as B goes to infinity
and determine Δ such that the error term is O y(B(n−1)/2−δ) for a δ > 0. For the latter, choosing 0 < Δ < 1/5 suffices; for
the coefficient on the other hand, the following lemma is needed:

Lemma 2.3. We have |q−(n+1)
∑

z∈(Z/qZ)n+1 e((af y(z))/q)| � q−n/2 ·
∏n

i=0 |ai y3
i |1/2

lcm(y0,...,yn)3/2 .

This can be proved easily using some basic facts concerning generalised Gauss sums and implies that Sy,a,t converges
for n � 5.

To conclude the proof of Theorem 2.1, the coefficient also has to converge as B tends to infinity when summing over all
admitted yi (using the same lemma as before) and the error term has to be of the form O (B(n−1)/2−δ) for some δ > 0; for
the latter, we need that 0 < Δ < 1/15.

2.2. Minor arcs

For the minor arcs m(Δ), we do not fix y but examine the whole equation at once. We will explain the different steps
needed to prove the following theorem:

Theorem 2.4. For n � 5, we have
∫
m(Δ)

E(α)dα = O (B(n−1)/2−δ) for some δ > 0.

(Notice that we do not have to impose an extra condition on Δ.)
Using Hölder’s inequality, we first of all see that

∣∣∣∣
∫

m(Δ)

E(α)dα

∣∣∣∣ � sup
α∈m(Δ)

(∣∣S0(α)
∣∣ · · · ∣∣Sn−4(α)

∣∣) · max
j=n−3,...,n

1∫
0

∣∣S j(α)
∣∣4

dα. (3)

For the integral, we obtain following upper bound:

Lemma 2.5. For any ε > 0, we have
∫ 1

0 |S j(α)|4 dα �ε B1+ε .

The proof of this lemma essentially boils down in counting the number of solutions (x, y) ∈ Z7 of y3
3(x2

3 − x2
4) = x2

1 y3
1 −

x2
2 y3

2 such that 1 � xi < B1/2/Y 3/2, Y < y j � 2Y } after applying Cauchy inequality. (Remark that this lemma implies that
the equation n1 + n2 = n3 + n4, where ni is squareful and |ni | � B for each i ∈ {1,2,3,4}, has O (B1+ε) solutions.)

If we now focus on the other part in (3), namely on supα∈m(Δ)(|S0(α)| · · · |Sn−4(α)|), we see this contains at least
two factors if n � 5. We may assume, after possibly renumbering the indices, that |a0| = mini=0,...,n |ai |. Using a classical
reasoning, often used when studying the integral over the minor arcs, called Weyl’s inequality (this can be found in e.g. [3,
Chapter 3]), it follows
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Proposition 2.6. We have |S0(α)| � |a0|1/4+ε′
B1/2−δ, for a δ > 0 and any ε′ > 0.

Combining the trivial upper bound |Si(α)| � B1/2/|ai |1/2 for the other factors with Proposition 2.6 and Lemma 2.5
completes the proof of Theorem 2.4.

3. Towards the main problem

From Theorem 2.1 and Theorem 2.4, it follows that

Theorem 3.1. For n � 5, we have #Ma,t(B) = Ca,t · B(n−1)/2 + O (B(n−1)/2−δ), for some δ > 0 and Ca,t as described in Theorem 2.1.

We can now use this theorem to determine the size of the set M(B) as defined in the introduction.

Theorem 3.2. For n � 5, it holds that #M(B) = C · B(n−1)/2 + O (B(n−1)/2−δ) for some δ, C > 0. An explicit description of C is given
in (4).

Since we already have a (similar) asymptotic formula for the size of the set M1,0(B) (but without the coprimality condi-
tion) the only problem still left to prove Theorem 3.2 is to see how the gcd condition gcd(xi yi, i = 0, . . . ,n) = 1 comes in.
Notice that this is not so trivial: the Möbius inversion we need here leads to divisibility conditions on both xi and yi which
are rather tricky to handle. The key idea follows from the inclusion–exclusion principle. Denoting the set{

(x, y) ∈ Z2n+2
0

∣∣∣ n∑
i=0

x2
i y3

i = 0, max
i=0,...,n

∣∣x2
i y3

i

∣∣ � B, ei|xi, f i|yi for all i ∈ {0, . . . ,n}
}

(where ei, f i ∈ N and f i (and of course yi) squarefree for each i) by N(e, f )(B), we get #N(e, f )(B) = #Me2 f 3,0(B) and thus

from Theorem 3.1 that #N(e, f )(B) = Ce2 f 3,0 · B(n−1)/2 + O (B(n−1)/2−δ). Defining an adapted Möbius function μ : Nn+1 ×
Nn+1 → Z : (e, f ) 
→ μ(e, f ) such that

#M(B) =
∞∑

e=1

∑
(e, f )∈N2n+2

e=gcd(ei f i , i=0,...,n)

μ(e, f ) · #N(e, f )(B),

we can then prove Theorem 3.2, with the (convergent) series C defined as

C =
∞∑

e=1

∑
(e, f )∈N2n+2

gcd(ei f i , i=0,...,n)=e

μ(e, f ) · Ce2 f 3,0. (4)

Notice that this is not so trivial: to do this, it is essential to notice that the error term in the expression of #Ma,t(B)

(Theorem 3.1) is independent of a and t and that we can find an uniform upper bound of Ca,t (also independent of a and t).
This allows us to prove the convergence of (4) and afterwards to find a proper upper bound of |#M(B) − C · B(n−1)/2|.
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