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We provide a new formulation of Harnack’s inequality for nonlocal operators. In contrast
to previous versions we do not assume harmonic functions to have a sign. The version of
Harnack’s inequality given here generalizes Harnack’s classical result from 1887 to nonlocal
situations. As a consequence we derive Hölder regularity estimates by an extension
of Moser’s method. The inequality that we propose is equivalent to Harnack’s original
formulation but seems to be new even for the Laplace operator.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous fournissons une nouvelle formulation de l’inégalité de Harnack pour des opérateurs
non-locaux. En contraste avec les versions précédentes, nous n’avons pas à supposer que les
fonctions harmoniques sont de signe constant. La version de l’inégalité de Harnack donnée
ici généralise le résultat classique de Harnack datant de 1887 pour les cas non-locaux.
Conséquemment, on obtient des estimations de la régularité Hölder grâce à une extension
de la méthode de Moser. L’inégalité que nous proposons est équivalente à la formulation
originale de l’inégalité de Harnack mais semble être nouvelle y compris pour l’opérateur
de Laplace.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Harnack’s inequality from 1887 for harmonic functions can be formulated as follows:

Theorem 1.1. (See [6].) There is a constant c > 0 such that for any nonnegative harmonic function u : B1 → R

u(x) � cu(y) for x, y ∈ B1/2.

In the first fifty years after publication the inequality itself did not attract as much attention as the resulting convergence
theorems. The situation nowadays is quite different for at least two reasons. On one hand, the parabolic version of Harnack’s
inequality guarantees that the underlying manifold satisfies the volume doubling property and a scale invariant Poincaré
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inequality. On the other hand, Moser showed in 1961 that Harnack’s inequality itself leads to a priori estimates in Hölder
spaces. This result can be formulated in a metric measure space (Ω,d,μ). For R > r > 0, x0 ∈ Ω , set

Br(x0) = {
x ∈ Ω

∣∣ d(x0, x) < r
}
. (1)

For every r > 0, let Sr denote a family of bounded Borel measurable functions on Ω satisfying Ss ⊂ Sr whenever 0 < r <

s < ∞, and λu + μ ∈ Sr for all r > 0, λ ∈ R,μ ∈ R and u ∈ Sr .

Theorem 1.2. (See [10].) Let x0 ∈ Ω , θ > 1 and (Sr)r as above. Assume that there is c > 0 such that for any R > 0,

(u ∈ S R) ∧ (
u � 0 in B R(x0)

)
implies sup

x∈B R/θ (x0)

u � c inf
x∈B R/θ (x0)

u. (2)

Then there exist β ∈ (0,1) and C > 0 such that for any R > 0, any u ∈ S R and any x ∈ B R(x0)

∣∣u(x) − u(x0)
∣∣ � C

∥∥u − u(x0)
∥∥∞

(
d(x, x0)

R

)β

.

Because of this theorem, Harnack’s inequality became very important in the study of various linear and nonlinear differ-
ential equations. The aim of this Note is to study the two theorems above for nonlocal operators.

2. Nonlocal operators

For α ∈ (0,2), u ∈ C2
c (Rd) and x ∈ R

d we define

�α/2u(x) = Ad,α lim
ε→0+

∫
|y−x|>ε

u(y) − u(x)

|y − x|d+α
dy, (3)

where Ad,α = Γ ((d+α)/2)

2−απd/2|Γ (−α/2)| . Using corresponding Poisson kernels one can easily prove the following version of Harnack’s

inequality for nonlocal operators:

Theorem 2.1. (See [9].) There is a constant c > 0 such that for any function u : R
d → R with

�α/2u(x) = 0 for x ∈ B1, (4)

u(x) � 0 for x ∈ R
d, (5)

the following inequality holds:

u(x) � cu(y) for x, y ∈ B1/2.

Assuming nonnegativity of u in B1 only is not sufficient as the following result shows.

Theorem 2.2. (See [7].) There exists a function u : R
d → R, |u| � 1, which is infinitely many times differentiable in B1 and satisfies

�α/2u(x) = 0 for x ∈ B1,

u(x) > 0 for x ∈ B1 \ {0},
u(0) = 0.

The idea of the proof is to construct a function g : R
d \ B1 → R of the form g ≡ 1 on B R \ B1, g ≡ −1 on B S \ B R and

g ≡ 0 on R
d \ B S . Then one defines u with the help of Poisson integrals.

One drawback of the formulation of Harnack’s inequality in Theorem 2.1 is that it does not allow to apply Moser’s
approach in order deduce a priori estimates directly. Moreover, Theorem 2.1 does not generalize Harnack’s result in the
classical situation because of the assumption u(x) � 0 for x ∈ R

d for any α ∈ (0,2). The following new formulation is
equivalent to Theorem 2.1 but does not have these problems.

Theorem 2.3. There is a constant c > 0 such that for any u : R
d → R satisfying

�α/2u(x) = 0, x ∈ B1,

the following estimate holds for any x, y ∈ B1/2:
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u(x) � c
(
u(y) + Hα/2(B1|u−)

(0)
)
, i.e. (6)

u(x) � cu(y) + cα(2 − α)

∫
Rd\B1

u−(z)

(|z|2 − 12)α/2|z|d dz. (7)

If, in addition, u is nonnegative in B1 , then

u(x) � cu(y) + cα(2 − α)

∫
Rd\B1

u−(z)

|z|d+α
dz. (8)

Here, Hα/2(A| f )(x) stands for the Poisson integral with respect to the set A, the function f and the point x ∈ A. Obvi-
ously, Theorem 2.3 implies Theorem 2.1. Moreover, inequality (8) becomes Harnack’s original result if α → 2. The proof of
Theorem 2.3 is simple. One uses u = u+ − u− and applies Theorem 2.1 to the function x �→ Hα/2(B1|u+)(x). This principle
carries over to more general settings such as the cases treated in [1] and subsequent works or [3].

Lemma 2.4. Let (X, W ) be a balayage space (cf. [5]) such that 1 ∈ W . Let V , W be open sets in X with V ⊂ W . Let c > 0. Suppose
that, for all x, y ∈ V and u ∈ H+

b (V ),

u(x) � cu(y). (9)

Then for every u ∈ Hb(W )

u(x) � cu(y) + c

∫
u− dεV c

y . (10)

Here, Hb(A) denotes the set of bounded functions which are harmonic in the Borel set A. Functions in H+
b (A), in

addition, are nonnegative. εV c

y denotes the harmonic measure of V with respect to y ∈ V .

Proof. Let u ∈ Hb(W ). Then u(x) = εV c

x (u), u(y) = εV c

y (u) and hence

u(x) � εV c

x

(
u+)

� cεV c

y

(
u+) = cεV c

y

(
u + u−) = cu(y) + c

∫
u− dεV c

y .

The proof is complete. �
Note, that Theorem 2.3 provides a new formulation of Harnack’s inequality in the case α = 2, too.

Theorem 2.5. There is a constant c > 0 such that for any harmonic function u : B1 → R the following estimate holds for any x, y ∈
B1/2:

u(x) � c

(
u(y) +

∫
∂ B1

u−(z)

|z|d dz

)
. (11)

3. Applications

The strength of the above formulation of Harnack’s inequality is that it allows us to extend Moser’s approach. We use the
set-up of the metric measure space (Ω,d,μ) from above. For R > r > 0, x0 ∈ Ω , set Ar,R(x0) = B R(x0) \ Br(x0). For every
r > 0, let μr denote a finite measure on Ω \ Br(x0). We assume that, for some θ > 1, some x0 ∈ Ω , and for every j ∈ N0,

η j := sup
r>0

μr
(

Aθ j r,θ j+1r(x0)
)
< ∞ and lim sup

j→∞
η

1/ j
j < 1. (12)

Let us look at an example. Assume k : R
d × R

d → [0,∞) satisfies for some α ∈ (0,2), γ > 0, and κ > 0, M � 0:

κ−1|x − y|−d−α � k(x, y) � κ |x − y|−d−α, |x − y| � 1,

0 � k(x, y) � M|x − y|−d−γ , |x − y| � 1. (13)

For r > 0, A a Borel set in R
d \ Br(x0), set

μr(A) =
( ∫

d

k(x0, z)dz

)−1 ∫
A

k(x0, y)dy.
R \Br(x0)
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Then there is a constant c(κ, M, γ ) > 0 such that for any θ > 1, r ∈ (0,7/8) and j ∈ N

μr
(

Aθ j r,θ j+1r(x0)
)
� μr

(
R

d \ Bθ j r(x0)
)
� c(κ, M, γ )rα

(
θ jr

)−α � c(κ, M, γ )θ− jα,

so that (12) is satisfied.
Here is an extension of Theorem 1.2:

Theorem 3.1. Let x0 ∈ Ω , (Sr)r , θ > 1 and (μr)r be as above. Assume that there is c > 0 such that for any R > 0,

(u ∈ S R) ∧ (
u � 0 in B R(x0)

)
implies sup

x∈B R/θ (x0)

u � c inf
x∈B R/θ (x0)

u + c

∫
Ω

u−(z)dμR(z). (14)

Then there exist β ∈ (0,1) and C > 0 such that for any R > 0, any u ∈ S R and any x ∈ B R(x0)

∣∣u(x) − u(x0)
∣∣ � C

∥∥u − u(x0)
∥∥∞

(
d(x, x0)

R

)β

. (15)

The proof of this result follows Moser’s ideas very closely.
Let us finally give an application to nonlocal Dirichlet forms. Assume k : R

d × R
d → [0,∞) satisfies for some α ∈ (0,2)

and positive reals c, γ , M:

c−1 Ad,α |x − y|−d−α � k(x, y) � cAd,α |x − y|−d−α, |x − y| � 1,

0 � k(x, y) � M Ad,α |x − y|−d−γ , |x − y| > 1. (16)

Under these assumptions and

E (u, v) =
∫
Rd

∫
Rd

(
u(y) − u(x)

)(
v(y) − v(x)

)
k(x, y)dy dx

the tuple (E , Hα/2(Rd)) is a regular Dirichlet-form. For an open bounded domain Ω , set DΩ(E ) = L∞(Rd) ∩ Hα/2
loc (Ω).

A priori estimates in Hölder spaces for similar Dirichlet forms have been obtained in [8,2,4] and other works. The methods
used there do not give uniform estimates for α → 2. With the help of Theorem 3.1 it is possible to establish a uniform result:

Theorem 3.2. There are β ∈ (0,1) and C > 0 such that for any α ∈ (α0,2), u ∈ D B1 (E ) with E (u, φ) = 0 for any φ ∈ C∞
c (B1) the

following inequality holds for almost any x, y ∈ B1/2:∣∣u(x) − u(y)
∣∣ � C‖u‖∞ d(x, y)β . (17)

As in Moser’s original result one can use test functions of the form φ = τ 2 sign(p)up where τ is a smooth cut-off
function. For p = −1 one deduces that log u belongs to BMO(B3/4) which is a key step in the proof.
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