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In literature, two basic construction methods have been used to study vector bundles
on a Hirzebruch surface. On the one hand, we have Serre’s method and elementary
modifications, describing rank-2 bundles as extensions in a canonical way (Brînzănescu
and Stoia, 1984 [4,5], Brînzănescu, 1996 [6], Brosius, 1983 [7], Friedman, 1998 [9]), and on
the other hand, we have a Beilinson-type spectral sequence (Buchdahl, 1987 [8]). Morally,
the Beilinson spectral sequence indicates how to recover a bundle from the cohomology of
its twists and from some sheaf morphisms (the differentials of the sequence). The aim of
this Note is to show that the canonical extension of a rank-2 bundle can be deduced from
the Beilinson spectral sequence of a suitable twist, called the normalization. In the final part
we give a cohomological criterion for a topologically trivial vector bundle on a Hirzebruch
surface to be trivial. To emphasize the relations and the differences between these two
construction methods mentioned above, two different proofs are given.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans la littérature, deux méthodes de construction fondamentales ont été utilisées pour
étudier les fibrés vectoriels sur une surface de Hirzebruch. D’une part, nous avons la
méthode de Serre et les modifications élémentaires, décrivant d’une manière canonique les
fibrés de rang deux comme des extensions (Brînzănescu et Stoia, 1984 [4,5], Brînzănescu,
1996 [6], Brosius, 1983 [7], Friedman, 1998 [9]) et d’autre part, nous avons la suite
spectrale de Beilinson (Buchdahl, 1987 [8]). Moralement, la suite spectrale de Beilinson
nous indique comment récupérer un fibré à partir de la cohomologie de ses tensorisations
et de certains morphismes de faisceaux (les différentielles de la suite spectrale). Le but
de cette Note est de montrer que l’extension canonique d’un fibré de rang deux peut
être déduite de la suite spectrale de Beilinson d’une tensorisation convenable, appellée
la normalisation. Dans la dernière partie, nous donnons un critère cohomologique pour
qu’un fibré vectoriel topologiquement trivial sur une surface de Hirzebruch soit trivial.
Afin de souligner les relations et les différences entre les deux méthodes de construction
mentionnées ci-dessus, deux démonstrations différentes sont présentées.
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We fix the notation. Let X = Σe
π→ P

1 be a Hirzebruch surface, e � 0. Denote by C0 the negative section, i.e. C2
0 = −e,

and by F a fiber of the ruling.

1. Extensions and Beilinson spectral sequences

In this section, we compare two basic construction methods used to study vector bundles on a Hirzebruch surface:
extensions and Beilinson spectral sequences.

1.1. Rank-2 bundles as extensions [4–7,9]

Besides the Chern classes, any rank-two vector bundle M on the Hirzebruch surface X has two numerical invariants
describing it as an extension in a canonical manner, [4–6]. The first invariant dM is defined by the splitting type on a
general fiber F : if M|F ∼= O F (d) ⊕ O F (d′) with d � d′ , then dM := d. The second invariant rM is obtained from a push-
forward. Note that π∗(M(−dC0)) is either of rank one or two, according to whether d > d′ or d = d′ . If d > d′ , we put
rM := r = deg(π∗(M(−dC0))). If d = d′ , then π∗(M(−dC0)) = OP1 (r) ⊕ OP1 (s) with r � s and we put rM := r. The integer s
provides us with an extra-invariant for bundles with d = d′ (of “equal” type, following the terminology of [7]).

The bundle M is expressed as an extension

0 → O X (dC0 + r F ) → M → O X
(
d′C0 + r′ F

) ⊗ Iζ → 0, (1)

where ζ ⊂ X is a zero-dimensional subscheme, and this extension is unique if either d > d′ or d = d′ and s < r. The twist
M(−dC0 − r F ) is called the normalization of M , and M is called normalized if d = r = 0. Hence the extension (1) is unique if
and only if the space of global sections of the normalization is one-dimensional.

The length of ζ is the uniformity degree of M . Precisely, M has the same splitting type over all the fibers of π (i.e. it is
uniform) if and only if ζ is empty, [1]. The invariant r measures the stability of M , see [2].

The discriminant of M is computed by the formula:

1

4
�(M) = c2(M) − c1(M)2

4
= �(ζ ) − 1

4

(
d − d′)(e

(
d′ − d

) − 2
(
r′ − r

))
, (2)

therefore, if d = d′ , �(M) = 4�(ζ ) � 0. Alternatively, in the case d = d′ , M can be described as an elementary modification
of a projectively flat rank-2 bundle [7,9]:

0 → π∗(π∗M(−dC0)
)
(dC0) → M → Q → 0 (3)

where Q (−dC0) is supported on (possibly multiple) fibers passing through ζ , is of total degree −�(ζ ), and has no global
sections. Note that π∗(π∗M(−dC0))(dC0) is split, isomorphic to O X (dC0 + r F )⊕ O X (dC0 + sF ), and in particular, any vector
bundle M of splitting type O F (d)⊕2 over each fiber of π is decomposable.

Proposition 1. Notation as above.

1. If either d > d′ or d = d′ and s < r, then the bundle O X (dC0 + r F ) coincides with the image of the multiplication map:
H0(X, M(−dC0 − r F )) ⊗ O X (dC0 + r F ) → M.

2. If d = d′ and s = r, then the bundle π∗(π∗M(−dC0))(dC0) coincides with the image of the multiplication map: H0(X, M(−dC0 −
r F )) ⊗ O X (dC0 + r F ) → M.

Proof. Applying the projection formula, we may assume, after a twist, that M is normalized, i.e. d = r = 0. In this case, it
suffices to identify the image of the evaluation morphism H0(π∗(M))⊗ OP1 → π∗M . If d′ = c1(M) · F < 0 then π∗(M) = OP1 .
If c1(M) · F = 0 then π∗(M) = OP1 ⊕ OP1 (s), and hence the image of the evaluation morphism is either OP1 or O⊕2

P1

according to whether s < 0 or s = 0. �
The reduction to the normalization, used in the proof of the previous proposition, will appear again in the sequel in

relation with Beilinson spectral sequences.

1.2. Beilinson spectral sequences, following Buchdahl ([8], see also [3])

The diagonal � of any Hirzebruch surface X = Σe inside X × X can be described scheme-theoretically as the zero-
locus of a global section in a rank-two vector bundle over X × X [8]. In other words, X satisfies the diagonal property [11].
This description represents the foundation of the Beilinson spectral sequence and is achieved in two steps. Put Y = X ×P1

X ⊂ X × X , and denote by p1, p2 : X × X → X the two projections. Firstly, consider the embedding � ⊂ Y and observe
that OY (�) = (p∗

1T X |P1 (−C0) ⊗ p∗
2 O X (C0))|Y [8,3]; recall that T X |P1 (−C0) = O X (C0 + eF ) and p∗

1 O X (F )|Y ∼= p∗
2 O X (F )|Y .

Secondly, use an extension lemma to pass from the fibered product to the usual product. Precisely, there exists a rank-two
bundle G on X × X , given by a non-trivial extension



M. Aprodu, M. Marchitan / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 687–690 689
0 → p∗
1T X |P1(−C0) ⊗ p∗

2 O X (C0) → G → O X×X (Y ) → 0 (4)

and a global section of G whose zero-scheme coincides with � ⊂ X × X (see, for example, [3]). In particular, we obtain a
truncated Koszul complex

0 → ∧2G∗ → G∗ → O X×X → 0, (5)

which is exact except at O X×X . Let M be a vector bundle of arbitrary rank on X . Twisting the complex (5) by p∗
2(M) and

taking the hypercohomology, we obtain a spectral sequence abutting to M [8]:

E p,q
1 = Rq p1∗

(∧−p G∗ ⊗ p∗
2(M)

) ⇒
{

M if p + q = 0,

0 otherwise.

Note that E p,q
1 = 0 if p /∈ {−2,−1,0} or if q /∈ {0,1,2}. The remaining terms of the spectral sequence are computed by

twisting the dual of the extension (4) by p∗
2(M) and applying p1∗ [8,3]. For any q we have:

E0,q
1

∼= Hq(X, M) ⊗ O X , E−2,q
1

∼= Hq(X, M(−C0 − F )
) ⊗ O X

(−C0 − (e + 1)F
)
,

and E−1,q
1 can be determined from the exact sequence

Hq(X, M(−F )
) ⊗ O X (−F ) → E−1,q

1 → Hq(X, M(−C0)
) ⊗ O X (−C0 − eF ). (6)

Morally, using the Beilinson spectral sequence, any vector bundle should be completely determined by the cohomology of
suitable twists and by some vector bundle morphisms (the differentials of the spectral sequence). To illustrate this principle
we show that in the rank-2 case, the extensions of the previous section can be recovered from the Beilinson spectral
sequences of the normalizations. For simplicity, we assume that the bundle in question is already normalized, in which case
it will either have h0 = 1 or h0 = 2, according to the two cases of Proposition 1.

Theorem 1. Let M be a normalized rank-2 vector bundle on a Hirzebruch surface X.

1. If h0(X, M) = 1, then either E−1,1∞ = 0 or E−2,2∞ = 0 and the filtration provided by the Beilinson spectral sequence coincides with
the canonical extension (1).

2. If h0(X, M) = 2, then E−2,2∞ = 0 and the filtration provided by the Beilinson spectral sequence coincides with the defining elemen-
tary modification sequence (3).

Proof. Note that the natural map E0,0
1

∼= H0(X, M) ⊗ O X � E0,0∞ ⊂ M coincides with the evaluation map.

Suppose h0(X, M) = 1. From the hypothesis and Proposition 1, it follows that E0,0
1

∼= E0,0∞ ∼= O X is the first term of the
sequence (1).

By the shape of the spectral sequence, E−2,2∞ ⊂ E−2,2
1

∼= H2(X, M(−C0 − F )) ⊗ O X (−C0 − (e + 1)F ), hence E−2,2∞ is either
torsion-free of rank one or it is zero.

If E−2,2∞ = 0, then the Beilinson filtration reduces to

0 → E0,0∞ → M → E−1,1∞ → 0,

and, since E0,0∞ = O X and h0(X, M) = 1, it follows that this exact sequence coincides with the extension (1). Note that this
situation occurs if c1(M) · F = 0, as E−2,2

1 = 0 in this case.

If E−2,2∞ is torsion-free of rank one, then it is a quotient of M by a rank-one subsheaf, hence E−1,1∞ must be zero and the
Beilinson filtration reduces to the sequence

0 → E0,0∞ → M → E−2,2∞ → 0,

which coincides again, from the hypothesis and Proposition 1, with the extension (1). This situation occurs, for example, if
M = O X ⊕ O X (−C0 − F ) on X = P

1 × P
1.

The case h0(X, M) = 2 is solved in a similar manner. �
As already mentioned, if M is a normalized rank-2 bundle with h0(X, M) = 1, then the canonical extension (1) is unique,

and hence it only depends on M . If h0(X, M) = 2, i.e. M is an elementary modification along fibers of the trivial bundle,
uniqueness of (1) fails, however, the defining elementary modification sequence is unique in this case.
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2. The cohomological description of trivial bundles

In this section we give a cohomological criterion for a topologically trivial vector bundle on a Hirzebruch surface to be
trivial. Recall that, for Hirzebruch surfaces, topological triviality is equivalent to the vanishing of the Chern classes.

Theorem 2. Notation as above. A topologically trivial vector bundle M on X of rank � 2 is trivial if and only if h0(X, M(−C0)) =
h0(X, M(−F )) = h1(X, M) = h2(X, M(−C0 − F )) = 0.

Proof. (Arbitrary rank, using the Beilinson spectral sequence.) It is clear that the trivial bundle satisfies the four vanishing
conditions.

Conversely, we suppose that the bundle M has h0(X, M(−C0)) = h0(X, M(−F )) = h1(X, M) = h2(X, M(−C0 − F )) = 0
and we prove it is trivial. To this end, we use the Beilinson spectral sequence.

By topological triviality, the Chern classes of M vanish, and by Riemann–Roch, we obtain χ(M) = r and χ(M(−C0)) =
χ(M(−F )) = χ(M(−C0 − F )) = 0. It implies, using the hypothesis, the sequence (6) and the Serre duality that E−2,q

1 = 0

and E−1,q
1 = 0 for all q. Beside, E0,0

1
∼= Or

X and E0,1
1 = E0,2

1 = 0.

Hence E p,q∞ = 0 for all (p,q) = (0,0), and it follows that M ∼= E0,0∞ ∼= Or
X . �

Proof. (Rank-2, using the canonical extension.) We prove that M is normalized. Using formula (2), it will imply that M is
trivial.

First, we verify that dM = 0. Suppose dM = d > 0. From the extension (1) and from the condition h0(M(−C0)) = 0 it
follows that rM = r < 0. Since h1(M) = 0, the long cohomology sequence implies that h1(O X (dC0 + r F )) = 0, i.e. r � de − 1
which is possible only if e = 0 and r = −1. On the other hand, the formula (2) implies d(2r − de) = −2d � 0, contradiction.
Hence dM = 0 and the extension (1) is of type

0 → O X (r F ) → M → O X (−r F ) → 0,

where r = rM . From the definition of rM it follows that r � 0. Since h0(M(−F )) = 0, r must be � 0. Hence rM = 0. We have
used three out of the four vanishing conditions from the hypothesis. Note that, since M ∼= M∗ in this case, the condition
h2(X, M(−C0 − F )) = 0 follows from the other conditions, and the Serre duality. �
Remark 1. Note that in the statement of Theorem 2 in the rank-2 case, no assumption was made on the splitting type of M
on fibers, however, a posteriori, the bundle is normalized. It follows also from the proof that a topologically trivial rank-2
bundle is analytically trivial if and only if it is normalized.

Remark 2. The classical Beilinson spectral sequence [10] for P
2 provides us with a similar triviality criterion. Precisely, a flat

vector bundle of rank � 2 on P
2 is trivial if and only if h0(M(−1)) = h1(M(−2)) = 0. Other results in the same spirit can

be proved for bundles on rational scrolls (use [3]), and higher-dimensional projective spaces.
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[3] M. Aprodu, V. Brînzănescu, Beilinson type spectral sequences on scrolls, in: Moduli Spaces and Vector Bundles, in: London Math. Soc. Lecture Note

Ser., vol. 359, Cambridge Univ. Press, Cambridge, 2009, pp. 426–436.
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