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A graph G is domination edge critical, or just γ -edge critical, if for any edge e not in G ,
γ (G + e) < γ (G). We will characterize all connected γ -edge critical cactus graphs.
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r é s u m é

Un graphe G est un graphe à domination critique par addition d’arête, ou simplement γ -
critique par arête, si pour toute arête e qui n’est pas dans G on a γ (G + e) < γ (G). Nous
caractérisons les graphes cactus, connexes et γ -critiques par arête.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

For notation and terminology in general we follow [4]. Let G = (V , E) = (V (G), E(G)) be a graph without isolated ver-
tices. The (open) neighborhood N(v) of a vertex v ∈ V is the set of vertices which are adjacent to v . For a subset S ,
N(S) = ⋃

v∈S N(v), and N[S] = N(S) ∪ S . A set S ⊆ V is a dominating set of G if N[S] = V (G). The minimum cardinality of
a dominating set of G is the domination number and denoted by γ (G). We refer a dominating set of cardinality γ (G) as a
γ (G)-set. For references on domination see for example [4].

The concept of domination critical graphs in sense of edge addition is introduced by Sumner and Blitch [5], and further
studied by several authors. A graph G is domination edge critical, or just γ -edge critical, if for any edge e not in G , γ (G +e) <

γ (G). It is easy to see that in a γ -edge critical graph G for any edge not in G , γ (G + e) = γ (G) − 1. A graph G is k–γ -edge
critical if G is γ -edge critical and γ (G) = k. For references on domination edge critical graphs see for example [1–3,5,6].

Several authors studied γ -edge critical graphs. Sumner and Blitch [5] characterized γ -edge critical graphs with γ (G) =
1,2. They also gave six γ -edge critical graphs of order n � 8 with γ (G) = 3. For γ (G) � 3, characterizing γ -edge critical
graphs is difficult and is still open. Sumner [6] characterized disconnected γ -edge critical graphs with γ (G) = 3. Favaron
et al. [3] studied the diameter of γ -edge critical graphs. Ananchuen and Plummer [1,2] studied properties of γ -edge critical
graphs with γ (G) = 3.

A graph G is called a cactus graph if each edge of G is contained in at most one cycle. A cactus graph having one cycle
is called a unicyclic graph and a connected cactus graph with no cycle is called a tree. In this paper we study γ -edge critical
graphs, and characterize all γ -edge critical cactus graphs.

Let S be a dominating set in a graph G and let v ∈ S . A vertex w ∈ V (G) is an S-private neighbor of v if N[w] ∩ S = {v}.
Further, the S-private neighborhood of v , denoted pn[v, S], is the set of all S-private neighbors of v . Thus if pn[v, S] = {v}
then S − {v} is a dominating set for G − v . We recall that a pendant vertex (or a leaf) is a vertex of degree one, and a
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support vertex is a vertex which is adjacent to a pendant vertex. We also call an edge e a pendant edge if at least one of
its end-points is a pendant vertex.

We make use of the following lemma:

Lemma 1. (See Sumner and Blitch [5].) A graph G with γ (G) = 1 is γ -edge critical if and only if G is Kn.

2. Preliminary results

We first give a characterization of all γ -edge critical graphs.

Theorem 2. A graph G is γ -edge critical if and only if for any two non-adjacent vertices x, y there is a γ (G)-set S containing x, y
such that pn[x, S] = {x} or pn[y, S] = {y}.

Proof. Let G be a γ -edge critical graph and x, y be two non-adjacent vertices of G . Let S be a γ (G + xy)-set. If {x, y} ⊆ S
or {x, y} ∩ S = ∅, then S is a dominating set for G , a contradiction. Thus assume, without loss of generality, that x ∈ S and
y /∈ S . Now D = S ∪ {y} is a dominating set for G , and pn[y, D] = {y}. Since |S| = γ (G) − 1, we obtain that D is a γ (G)-set.

Conversely, let x, y be two non-adjacent vertices of G . By assumption there is a γ (G)-set S containing x, y such that
pn[x, S] = {x} or pn[y, S] = {y}. Assume that pn[x, S] = {x}. Then S − {x} is a dominating set for G + xy. We conclude that
G is γ -edge critical. �

In the following observation we characterize γ -edge critical paths and cycles:

Observation 3.

(1) A path Pn is γ -edge critical if and only if n = 2.
(2) A cycle Cn is γ -edge critical if and only if n = 3 or 4.

To characterizing γ -edge critical trees, we need the following lemmas:

Lemma 4. Any two support vertices in a γ -edge critical graph are adjacent.

Proof. Let G be a γ -edge critical and x, y be two support vertices of G . Assume that x is not adjacent to y. By Theorem 2,
there is a γ (G)-set S containing x, y such that pn[x, S] = {x} or pn[y, S] = {y}. Assume that pn[x, S] = {x}. Then any leaf
adjacent to x belongs to S . Now S −{w} is a dominating set for G , where w is a leaf adjacent to x which belongs to S . This
is a contradiction. �

Similarly the following is verified:

Lemma 5. Any support vertex in a γ -edge critical graph is adjacent to exactly one leaf.

We next characterize all γ -edge critical trees.

Theorem 6. A tree T is γ -edge critical if and only if T = P2 .

Proof. Let T be a γ -edge critical tree. By Lemma 4, diam(T ) � 3. By Lemma 5, T is a path. Now Observation 3 part (1)
implies the result. �
3. Main results

In this section we give our main results. We will characterize all connected γ -edge critical cactus graphs. Recall that the
corona cor(G) of a graph G is the graph obtained from G by adding a pendant edge to any vertex of G . We first investigate
weather the corona of a graph is γ -edge critical.

Lemma 7. The corona cor(G) of a connected graph G is γ -edge critical if and only if G is a complete graph with at least three vertices.

Proof. Let cor(G) be γ -edge critical. It is obvious that γ (cor(G)) = |V (G)|. If there are two non-adjacent vertices x, y in G ,
then γ (cor(G + xy)) = |V (G)| = γ (cor(G)), a contradiction. Thus G is a complete graph. Assume that |V (G)| = 2. Then
cor(G) is the path P4, and so γ (cor(G)) = 2. If x, y are the two end-points of cor(G), then γ (cor(G)+ xy) = γ (C4) = 2. This
is a contradiction, since G is γ -edge critical. Thus |V (G)| � 3.
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Conversely let G be the complete graph with at least three vertices. Let x, y be two leaves of cor(G) and x1, y1 be the
support vertices adjacent to x, y, respectively. It follows that (V (G) − {x1, y1}) ∪ {x} is a dominating set for cor(G) + xy, and
V (G) − {y1} is a dominating set for cor(G) + x1 y. Since x, y have been chosen arbitrarily, the result follows. �
Lemma 8. If G is a graph with a path v1–v2–v3–v4 such that v1 /∈ N(v4) and deg(vi) = 2 for i = 2,3, then G is not γ -edge critical.

Proof. Let G be a graph with a path v1–v2–v3–v4 such that deg(vi) = 2 for i = 2,3. Assume that G is γ -edge critical. By
Theorem 2, there is a γ (G)-set S containing v1, v4 such that pn[v1, S] = {v1} or pn[v4, S] = {v4}. Without loss of generality
assume that pn[v4, S] = {v4}. Then S ∩ {v2, v3} �= ∅. Now S − {v2, v3} is a dominating set for G , a contradiction. �
Lemma 9. Let x be a leaf and C be a cycle in a connected graph G such that d(x, C) � 2 and every vertex of C except one is of degree
two, then G is not γ -edge critical.

Proof. Let x be a leaf and C be a cycle in a graph G such that d(x, C) � 2 and every vertex of C except one is of degree two.
Assume that G is γ -edge critical. Let z ∈ V (C) be a vertex with d(x, z) = d(x, C) = d, and let P be a shortest path between x
and z. Let b ∈ N(z) be on P . By Lemma 8, |V (C)| � 4. Let w ∈ N(z) ∩ V (C). By Theorem 2, there is a γ (G)-set S containing
w , b such that pn[w, S] = {w} or pn[b, S] = {b}. If pn[w, S] = {w}, then |V (C) ∩ S| � 2, which implies that |V (C)| = 4.
Now (S − V (C)) ∪ {v} is a dominating set for G , where v ∈ V (C) − N[z]. This is a contradiction. Thus we may assume that
pn[b, S] = {b}. Now ((S − (V (C) ∪ {b})) ∪ (V (C) − N[z])) ∪ {z} is a dominating set for G . This is a contradiction. �

We are now ready to characterize all unicyclic γ -edge critical graphs.

Theorem 10. A connected unicycle graph G is γ -edge critical if and only if G is C3 , C4 , or cor(C3).

Proof. First it is easy to see that C3, C4, and cor(C3) are γ -edge critical. Let G be a unicyclic γ -edge critical graph, and let
C be the unique cycle of G . If G = C , then by Observation 3 part (2), G ∈ {C3, C4}. So we assume that G �= C . Let x be a leaf
of G such that d(x, C) is maximum, and let y ∈ V (C) be the vertex with d(x, y) = d(x, C). By Lemmas 4 and 9, d(x, C) � 1
and so d(x, C) = 1. By Lemma 5, deg(y) = 3. We show that G = cor(C). Assume that G �= cor(C). Then we assume that C
has some vertex of degree 2. By Lemmas 4 and 8, |V (C)| � 4.

If |V (C)| = 4, then at most one vertex in N(y) is a support vertex. If there is no support vertex in N(y), then it is easy
to see that G is not γ -edge critical. We may now assume that there is a support vertex a ∈ N(y) ∩ V (C). Let a1 be the leaf
adjacent to a. Then γ (G) = γ (G + a1x) = 2, a contradiction.

Thus we assume that |V (C)| = 3. Let V (C) = {y,a,b}. Since G has some vertex of degree 2, we assume that deg(b) = 2. If
deg(a) = 2, then γ (G) = 1 and by Lemma 1, G is not γ -edge critical. So assume that deg(a) = 3. Let a1 be the leaf adjacent
to a. Then γ (G) = γ (G + a1x) = 2, a contradiction.

We conclude that G = cor(C). Then by Lemma 7, |V (C)| = 3 and so G = cor(C3). �
Our next aim is to characterize all γ -edge critical cactus graphs with at least two cycles.

Lemma 11. If G is a γ -edge critical cactus graph with at least two cycles, then δ(G) � 2.

Proof. Let G be a γ -edge critical cactus graph with k � 2 cycles. Let C1, C2, . . . , Ck be the cycles of G . Assume that δ(G) = 1.
Let x be a leaf of G . Without loss of generality assume that d(x, C1) � d(x, Ci) � d(x, C2) for i = 1,2, . . . ,k. Let z ∈ V (C2) be
the vertex with d(x, z) = d(x, C2) = d, and let P be the shortest path between x and z. If d(x, z) � 2, then by Lemma 4, any
vertex of V (C2) − {z} is of degree two, and by Lemma 9, G is not γ -edge critical which is a contradiction. Thus d(x, z) � 1.

Suppose next that d(x, z) = 1. Thus d(x, Ci) = 1 for i = 1,2, . . . ,k, and V (C1) ∩ V (C2) ∩ · · · ∩ V (Ck) = {z}. By Lemma 5,
x is the only leaf adjacent to z. Let w1 ∈ N(z) ∩ V (C1) and w2 ∈ N(z) ∩ V (C2). By Theorem 2, there is a γ (G)-set S
containing w1, w2 such that pn[w1, S] = {w1} or pn[w2, S] = {w2}. But then (S − {w1, w2, x}) ∪ {z} is a dominating set
for G , a contradiction. We deduce that d = 0, contradicting that x is a leaf. �
Theorem 12. There is no γ -edge critical cactus graph with at least two cycles.

Proof. Assume to the contrary that G is a γ -edge critical cactus graph with at least two cycles. Let C1, C2, . . . , Ck be the
cycles of G . By Lemma 11, δ(G) � 2. Without loss of generality assume that d(C1, C2) � d(Ci, C j) for 1 � i, j � k and i �= j.
By Lemma 8, |V (Ci)| � 4 for i = 1,2. Let x ∈ V (C1) and y ∈ V (C2) be two vertices with d(x, y) = d(C1, C2).

We show that d(x, y) = 0. Assume that d(x, y) � 1. Let a ∈ N(x) ∩ V (C1) and b ∈ N(x) ∩ V (P ). By Theorem 2, there is a
γ (G)-set S containing a,b such that pn[a, S] = {a} or pn[b, S] = {b}. Suppose that pn[b, S] = {b}. Then (S − (V (C1) ∪ {b})) ∪
{x} ∪ (V (C1) − N[x]) is a dominating set for G , a contradiction. Thus pn[a, S] = {a}. Then |S ∩ V (C1)| � 2. This implies that
|V (C1)| = 4. Now (S − V (C2) ∪ (V (C2) − N[x])) is a dominating set for G , a contradiction. Hence d(x, y) = 0.
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This implies that V (C1) ∩ V (C2) ∩ · · · ∩ V (Ck) = {x}. Let a1 ∈ N(x) ∩ V (C1) and b1 ∈ N(x) ∩ V (C2). By Theorem 2, there is
a γ (G)-set S containing a1, b1 such that pn[a1, S] = {a1} or pn[b1, S] = {b1}. But |V (Ci)| � 4 for i = 1,2. Now it is a routine
matter to see that G is not γ -edge critical, a contradiction. �

Now from Theorems 6, 10, and 12 we obtain the following:

Theorem 13. A connected cactus graph G is γ -edge critical if and only if G is P2 , C3 , C4 , or cor(C3).

We close with the following problem:

Problem 14. Characterize all connected γ -edge critical graphs G with δ(G) = 1.
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