

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Combinatorics Some notes on domination edge critical graphs

Quelques remarques sur les graphes à domination critique par addition d'arête

Nader Jafari Rad, Sayyed Heidar Jafari

Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

ARTICLE INFO	ABSTRACT
Article history: Received 7 March 2011 Accepted after revision 12 April 2011 Available online 5 May 2011	A graph <i>G</i> is <i>domination edge critical</i> , or just γ -edge critical, if for any edge <i>e</i> not in <i>G</i> , $\gamma(G + e) < \gamma(G)$. We will characterize all connected γ -edge critical cactus graphs. © 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.
Presented by the Editorial Board	R É S U M É
	Un graphe <i>G</i> est un graphe à domination critique par addition d'arête, ou simplement γ - critique par arête, si pour toute arête <i>e</i> qui n'est pas dans <i>G</i> on a $\gamma(G + e) < \gamma(G)$. Nous caractérisons les graphes cactus, connexes et γ -critiques par arête.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

For notation and terminology in general we follow [4]. Let G = (V, E) = (V(G), E(G)) be a graph without isolated vertices. The *(open) neighborhood* N(v) of a vertex $v \in V$ is the set of vertices which are adjacent to v. For a subset S, $N(S) = \bigcup_{v \in S} N(v)$, and $N[S] = N(S) \cup S$. A set $S \subseteq V$ is a *dominating set* of G if N[S] = V(G). The minimum cardinality of a dominating set of G is the *domination number* and denoted by $\gamma(G)$. We refer a dominating set of cardinality $\gamma(G)$ as a $\gamma(G)$ -set. For references on domination see for example [4].

The concept of domination critical graphs in sense of edge addition is introduced by Sumner and Blitch [5], and further studied by several authors. A graph *G* is *domination edge critical*, or just γ -edge critical, if for any edge *e* not in *G*, $\gamma(G+e) < \gamma(G)$. It is easy to see that in a γ -edge critical graph *G* for any edge not in *G*, $\gamma(G+e) = \gamma(G) - 1$. A graph *G* is *k*- γ -edge critical if *G* is γ -edge critical and $\gamma(G) = k$. For references on domination edge critical graphs see for example [1–3,5,6].

Several authors studied γ -edge critical graphs. Sumner and Blitch [5] characterized γ -edge critical graphs with $\gamma(G) = 1, 2$. They also gave six γ -edge critical graphs of order $n \leq 8$ with $\gamma(G) = 3$. For $\gamma(G) \geq 3$, characterizing γ -edge critical graphs is difficult and is still open. Sumner [6] characterized disconnected γ -edge critical graphs with $\gamma(G) = 3$. Favaron et al. [3] studied the diameter of γ -edge critical graphs. Ananchuen and Plummer [1,2] studied properties of γ -edge critical graphs with $\gamma(G) = 3$.

A graph *G* is called a *cactus* graph if each edge of *G* is contained in at most one cycle. A cactus graph having one cycle is called a *unicyclic* graph and a connected cactus graph with no cycle is called a *tree*. In this paper we study γ -edge critical graphs, and characterize all γ -edge critical cactus graphs.

Let *S* be a dominating set in a graph *G* and let $v \in S$. A vertex $w \in V(G)$ is an *S*-private neighbor of v if $N[w] \cap S = \{v\}$. Further, the *S*-private neighborhood of v, denoted pn[v, S], is the set of all *S*-private neighbors of v. Thus if $pn[v, S] = \{v\}$ then $S - \{v\}$ is a dominating set for G - v. We recall that a pendant vertex (or a leaf) is a vertex of degree one, and a

E-mail address: n.jafarirad@gmail.com (N. Jafari Rad).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter $\,\,\odot$ 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences. doi:10.1016/j.crma.2011.04.005

support vertex is a vertex which is adjacent to a pendant vertex. We also call an edge e a pendant edge if at least one of its end-points is a pendant vertex.

We make use of the following lemma:

Lemma 1. (See Sumner and Blitch [5].) A graph G with $\gamma(G) = 1$ is γ -edge critical if and only if G is K_n .

2. Preliminary results

We first give a characterization of all γ -edge critical graphs.

Theorem 2. A graph *G* is γ -edge critical if and only if for any two non-adjacent vertices *x*, *y* there is a $\gamma(G)$ -set *S* containing *x*, *y* such that $pn[x, S] = \{x\}$ or $pn[y, S] = \{y\}$.

Proof. Let *G* be a γ -edge critical graph and *x*, *y* be two non-adjacent vertices of *G*. Let *S* be a $\gamma(G + xy)$ -set. If $\{x, y\} \subseteq S$ or $\{x, y\} \cap S = \emptyset$, then *S* is a dominating set for *G*, a contradiction. Thus assume, without loss of generality, that $x \in S$ and $y \notin S$. Now $D = S \cup \{y\}$ is a dominating set for *G*, and $pn[y, D] = \{y\}$. Since $|S| = \gamma(G) - 1$, we obtain that *D* is a $\gamma(G)$ -set. Conversely, let *x*, *y* be two non-adjacent vertices of *G*. By assumption there is a $\gamma(G)$ -set *S* containing *x*, *y* such that

 $pn[x, S] = \{x\}$ or $pn[y, S] = \{y\}$. Assume that $pn[x, S] = \{x\}$. Then $S - \{x\}$ is a dominating set for G + xy. We conclude that G is γ -edge critical. \Box

In the following observation we characterize γ -edge critical paths and cycles:

Observation 3.

- (1) A path P_n is γ -edge critical if and only if n = 2.
- (2) A cycle C_n is γ -edge critical if and only if n = 3 or 4.

To characterizing γ -edge critical trees, we need the following lemmas:

Lemma 4. Any two support vertices in a γ -edge critical graph are adjacent.

Proof. Let *G* be a γ -edge critical and *x*, *y* be two support vertices of *G*. Assume that *x* is not adjacent to *y*. By Theorem 2, there is a $\gamma(G)$ -set *S* containing *x*, *y* such that $pn[x, S] = \{x\}$ or $pn[y, S] = \{y\}$. Assume that $pn[x, S] = \{x\}$. Then any leaf adjacent to *x* belongs to *S*. Now $S - \{w\}$ is a dominating set for *G*, where *w* is a leaf adjacent to *x* which belongs to *S*. This is a contradiction. \Box

Similarly the following is verified:

Lemma 5. Any support vertex in a γ -edge critical graph is adjacent to exactly one leaf.

We next characterize all γ -edge critical trees.

Theorem 6. A tree T is γ -edge critical if and only if $T = P_2$.

Proof. Let *T* be a γ -edge critical tree. By Lemma 4, diam(*T*) \leq 3. By Lemma 5, *T* is a path. Now Observation 3 part (1) implies the result. \Box

3. Main results

In this section we give our main results. We will characterize all connected γ -edge critical cactus graphs. Recall that the corona cor(*G*) of a graph *G* is the graph obtained from *G* by adding a pendant edge to any vertex of *G*. We first investigate weather the corona of a graph is γ -edge critical.

Lemma 7. The corona cor(G) of a connected graph G is γ -edge critical if and only if G is a complete graph with at least three vertices.

Proof. Let cor(G) be γ -edge critical. It is obvious that $\gamma(cor(G)) = |V(G)|$. If there are two non-adjacent vertices x, y in G, then $\gamma(cor(G + xy)) = |V(G)| = \gamma(cor(G))$, a contradiction. Thus G is a complete graph. Assume that |V(G)| = 2. Then cor(G) is the path P_4 , and so $\gamma(cor(G)) = 2$. If x, y are the two end-points of cor(G), then $\gamma(cor(G) + xy) = \gamma(C_4) = 2$. This is a contradiction, since G is γ -edge critical. Thus $|V(G)| \ge 3$.

Conversely let *G* be the complete graph with at least three vertices. Let *x*, *y* be two leaves of cor(G) and x_1 , y_1 be the support vertices adjacent to *x*, *y*, respectively. It follows that $(V(G) - \{x_1, y_1\}) \cup \{x\}$ is a dominating set for cor(G) + xy, and $V(G) - \{y_1\}$ is a dominating set for $cor(G) + x_1y$. Since *x*, *y* have been chosen arbitrarily, the result follows. \Box

Lemma 8. If G is a graph with a path $v_1 - v_2 - v_3 - v_4$ such that $v_1 \notin N(v_4)$ and $\deg(v_i) = 2$ for i = 2, 3, then G is not γ -edge critical.

Proof. Let *G* be a graph with a path $v_1 - v_2 - v_3 - v_4$ such that $\deg(v_i) = 2$ for i = 2, 3. Assume that *G* is γ -edge critical. By Theorem 2, there is a $\gamma(G)$ -set *S* containing v_1 , v_4 such that $pn[v_1, S] = \{v_1\}$ or $pn[v_4, S] = \{v_4\}$. Without loss of generality assume that $pn[v_4, S] = \{v_4\}$. Then $S \cap \{v_2, v_3\} \neq \emptyset$. Now $S - \{v_2, v_3\}$ is a dominating set for *G*, a contradiction. \Box

Lemma 9. Let *x* be a leaf and *C* be a cycle in a connected graph *G* such that $d(x, C) \ge 2$ and every vertex of *C* except one is of degree two, then *G* is not γ -edge critical.

Proof. Let *x* be a leaf and *C* be a cycle in a graph *G* such that $d(x, C) \ge 2$ and every vertex of *C* except one is of degree two. Assume that *G* is γ -edge critical. Let $z \in V(C)$ be a vertex with d(x, z) = d(x, C) = d, and let *P* be a shortest path between *x* and *z*. Let $b \in N(z)$ be on *P*. By Lemma 8, $|V(C)| \le 4$. Let $w \in N(z) \cap V(C)$. By Theorem 2, there is a $\gamma(G)$ -set *S* containing *w*, *b* such that $pn[w, S] = \{w\}$ or $pn[b, S] = \{b\}$. If $pn[w, S] = \{w\}$, then $|V(C) \cap S| \ge 2$, which implies that |V(C)| = 4. Now $(S - V(C)) \cup \{v\}$ is a dominating set for *G*, where $v \in V(C) - N[z]$. This is a contradiction. Thus we may assume that $pn[b, S] = \{b\}$. Now $((S - (V(C) \cup \{b\})) \cup (V(C) - N[z])) \cup \{z\}$ is a dominating set for *G*. This is a contradiction. \Box

We are now ready to characterize all unicyclic γ -edge critical graphs.

Theorem 10. A connected unicycle graph G is γ -edge critical if and only if G is C₃, C₄, or cor(C₃).

Proof. First it is easy to see that C_3 , C_4 , and $cor(C_3)$ are γ -edge critical. Let G be a unicyclic γ -edge critical graph, and let C be the unique cycle of G. If G = C, then by Observation 3 part (2), $G \in \{C_3, C_4\}$. So we assume that $G \neq C$. Let x be a leaf of G such that d(x, C) is maximum, and let $y \in V(C)$ be the vertex with d(x, y) = d(x, C). By Lemmas 4 and 9, $d(x, C) \leq 1$ and so d(x, C) = 1. By Lemma 5, deg(y) = 3. We show that G = cor(C). Assume that $G \neq cor(C)$. Then we assume that C has some vertex of degree 2. By Lemmas 4 and 8, $|V(C)| \leq 4$.

If |V(C)| = 4, then at most one vertex in N(y) is a support vertex. If there is no support vertex in N(y), then it is easy to see that *G* is not γ -edge critical. We may now assume that there is a support vertex $a \in N(y) \cap V(C)$. Let a_1 be the leaf adjacent to *a*. Then $\gamma(G) = \gamma(G + a_1x) = 2$, a contradiction.

Thus we assume that |V(C)| = 3. Let $V(C) = \{y, a, b\}$. Since *G* has some vertex of degree 2, we assume that deg(*b*) = 2. If deg(*a*) = 2, then $\gamma(G) = 1$ and by Lemma 1, *G* is not γ -edge critical. So assume that deg(*a*) = 3. Let a_1 be the leaf adjacent to *a*. Then $\gamma(G) = \gamma(G + a_1x) = 2$, a contradiction.

We conclude that G = cor(C). Then by Lemma 7, |V(C)| = 3 and so $G = cor(C_3)$. \Box

Our next aim is to characterize all γ -edge critical cactus graphs with at least two cycles.

Lemma 11. If G is a γ -edge critical cactus graph with at least two cycles, then $\delta(G) \ge 2$.

Proof. Let *G* be a γ -edge critical cactus graph with $k \ge 2$ cycles. Let C_1, C_2, \ldots, C_k be the cycles of *G*. Assume that $\delta(G) = 1$. Let *x* be a leaf of *G*. Without loss of generality assume that $d(x, C_1) \le d(x, C_2)$ for $i = 1, 2, \ldots, k$. Let $z \in V(C_2)$ be the vertex with $d(x, z) = d(x, C_2) = d$, and let *P* be the shortest path between *x* and *z*. If $d(x, z) \ge 2$, then by Lemma 4, any vertex of $V(C_2) - \{z\}$ is of degree two, and by Lemma 9, *G* is not γ -edge critical which is a contradiction. Thus $d(x, z) \le 1$.

Suppose next that d(x, z) = 1. Thus $d(x, C_i) = 1$ for i = 1, 2, ..., k, and $V(C_1) \cap V(C_2) \cap \cdots \cap V(C_k) = \{z\}$. By Lemma 5, x is the only leaf adjacent to z. Let $w_1 \in N(z) \cap V(C_1)$ and $w_2 \in N(z) \cap V(C_2)$. By Theorem 2, there is a $\gamma(G)$ -set S containing w_1 , w_2 such that $pn[w_1, S] = \{w_1\}$ or $pn[w_2, S] = \{w_2\}$. But then $(S - \{w_1, w_2, x\}) \cup \{z\}$ is a dominating set for G, a contradiction. We deduce that d = 0, contradicting that x is a leaf. \Box

Theorem 12. There is no γ -edge critical cactus graph with at least two cycles.

Proof. Assume to the contrary that *G* is a γ -edge critical cactus graph with at least two cycles. Let C_1, C_2, \ldots, C_k be the cycles of *G*. By Lemma 11, $\delta(G) \ge 2$. Without loss of generality assume that $d(C_1, C_2) \le d(C_i, C_j)$ for $1 \le i, j \le k$ and $i \ne j$. By Lemma 8, $|V(C_i)| \le 4$ for i = 1, 2. Let $x \in V(C_1)$ and $y \in V(C_2)$ be two vertices with $d(x, y) = d(C_1, C_2)$.

We show that d(x, y) = 0. Assume that $d(x, y) \ge 1$. Let $a \in N(x) \cap V(C_1)$ and $b \in N(x) \cap V(P)$. By Theorem 2, there is a $\gamma(G)$ -set *S* containing *a*, *b* such that $pn[a, S] = \{a\}$ or $pn[b, S] = \{b\}$. Suppose that $pn[b, S] = \{b\}$. Then $(S - (V(C_1) \cup \{b\})) \cup \{x\} \cup (V(C_1) - N[x])$ is a dominating set for *G*, a contradiction. Thus $pn[a, S] = \{a\}$. Then $|S \cap V(C_1)| \ge 2$. This implies that $|V(C_1)| = 4$. Now $(S - V(C_2) \cup (V(C_2) - N[x]))$ is a dominating set for *G*, a contradiction. Hence d(x, y) = 0.

This implies that $V(C_1) \cap V(C_2) \cap \cdots \cap V(C_k) = \{x\}$. Let $a_1 \in N(x) \cap V(C_1)$ and $b_1 \in N(x) \cap V(C_2)$. By Theorem 2, there is a $\gamma(G)$ -set *S* containing a_1, b_1 such that $pn[a_1, S] = \{a_1\}$ or $pn[b_1, S] = \{b_1\}$. But $|V(C_i)| \leq 4$ for i = 1, 2. Now it is a routine matter to see that *G* is not γ -edge critical, a contradiction. \Box

Now from Theorems 6, 10, and 12 we obtain the following:

Theorem 13. A connected cactus graph G is γ -edge critical if and only if G is P_2 , C_3 , C_4 , or cor(C_3).

We close with the following problem:

Problem 14. Characterize all connected γ -edge critical graphs *G* with $\delta(G) = 1$.

Acknowledgements

We would like to thank the referee for his/her careful review of our manuscript and some helpful suggestions.

References

- [1] N. Ananchuen, M.D. Plummer, Some results related to toughness of 3-domination critical graphs, Discrete Mathematics 272 (2003) 5–15.
- [2] N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Mathematics 277 (2004) 1–13.
- [3] O. Favaron, D.P. Sumner, E. Wojcicka, The diameter of domination k-critical graphs, Journal of Graph Theory 18 (1994) 723–734.
- [4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [5] D. Sumner, P. Blitch, Domination critical graphs, Journal of Combinatorial Theory Ser. B 34 (1983) 65-76.
- [6] D.P. Sumner, Critical concept in domination, Discrete Mathematics 86 (1990) 33-46.