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By using structural and asymptotic properties of the Kontorovich–Lebedev transform
associated with Minkowski’s question mark function, we give an affirmative answer to
the question posed by R. Salem (Trans. Amer. Math. Soc. 53 (3) (1943) 439) whether its
Fourier–Stieltjes transform vanishes at infinity.
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r é s u m é

Grace à des propriétés structurelles et asymptotiques de la transformation de Kontorovich–
Lebedev associé à la fonction point d’interrogation de Minkowski, on apporte une réponse
positive à la question posée par R. Salem (Trans. Amer. Math. Soc. 53 (3) (1943) 439): la
transformée de Fourier–Stieltjes de la fonction point d’interrogation de Minkowski est-elle
nulle à l’infini?

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and auxiliary results

We deal here with the so-called Minkowski question mark function ?(x) : [0,1] �→ [0,1], which is defined by [2]

?
([0,a1,a2,a3, . . .]

) = 2
∞∑

i=1

(−1)i+12−∑i
j=1 a j , (1)

where x = [0,a1,a2,a3, . . .] stands for the representation of x by a regular continued fraction. We note that despite the
symbol ?(x) is quite odd to denote a function in such a way, we mildly resist the temptation of changing the notation,
which was used in the original Salem’s paper [11]. It is well known that ?(x) is continuous, strictly increasing and singular
with respect to Lebesgue measure. It can be extended on [0,∞) by using the following functional equations:

?(x) = 1−?(1 − x), 0 � x � 1, (2)

?(x) = 2?

(
x

x + 1

)
, x � 0, (3)
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?(x)+?

(
1

x

)
= 2, x > 0. (4)

This function decreases exponentially near the origin

?(x) = O
(
2−1/x), x → 0. (5)

Key values are ?(0) = 0, ?(1) = 1. Some properties of its moments can be found in [1]. As usual, we define the finite
Fourier–Stieltjes transform of the Minkowski question mark function by the following Stieltjes integral:

F (t) =
1∫

0

eixt d?(x), t ∈ R. (6)

In 1943 Salem asked [11] whether F (t) → 0 as |t| → ∞, putting the question for the corresponding Fourier–Stieltjes coef-
ficients. We note, that the question to determine whether a given measure is a Rajchman measure (that is, whose Fourier
transform vanishes at infinity), as far as measures arising from singular monotone functions are concerned, is a very del-
icate question. This situation is quite different from the one when the measure is absolutely continuous and the classical
Riemann–Lebesgue lemma for the class L1 can be applied (cf. [13], Ch. IV). For singular measures there are various examples
and the Fourier–Stieltjes transform need not tend to zero, although there do exist measures for which it goes to zero. For
instance, Salem [11,12] gave examples of singular functions, which are strictly increasing and whose Fourier coefficients still
do not vanish at infinity. On the other hand, Menchoff in 1916 [7] gave a first example of a singular distribution whose
coefficients vanish at infinity. Wiener and Wintner [15] (see also [4]) proved in 1938 that for every ε > 0 there exists a

singular monotone function such that its Fourier coefficients behave as n− 1
2 +ε , n → ∞.

Our aim in this Note is to solve this Salem’s problem. In fact, to achieve this goal several attempts were made by
the author, involving various representations of the Fourier–Stieltjes transform (6) via the composition of different integral
transformations, such as the Laplace, Hankel transforms and Riemann–Liouville fractional integro-differential operators (cf.
[18]). But finally we came to the conclusion that an application of index transforms [16] will be a rather effective tool
to achieve the goal and give an affirmative answer to the question. Namely, we will explore composition and asymptotic
properties of the Kontorovich–Lebedev transform with respect to the Haar measure dx

x (see in [5,14,8,16,18,17])

KL(τ ) =
∞∫

0

Kiτ (x) f (x)
dx

x
, τ ∈ R+, (7)

considering f as a continuous function on R+ having a suitable behaviour at infinity and near zero. The kernel of this
transform Kiτ (x) is the modified Bessel function (cf. [3], vol. II) of the pure imaginary index iτ . In the sequel we will
need an asymptotic behaviour at infinity of the Kontorovich–Lebedev transform (7) and its modification involving a shift
of the argument of the modified Bessel function. A basic asymptotic expansion of this type was given in [8] by using a
composition representation of the Kontorovich–Lebedev transform in terms of the Laplace and Fourier transforms (cf. from
[14,18]) and corresponding asymptotic expansions developed in [9] and [6]. Precisely, if f is continuous for x > 0, behaves
as O (xb), b > 0 as x → 0 and possesses the asymptotic expansion

f (x) ∼ ex cosβ

∞∑
n=0

anx−n, x → +∞, 0 < β � π

2
, (8)

then for each N � 1

KL(τ ) = 21/2π3/2e−πτ
N−1∑
n=0

an(sinβ)n+1/2 P−n−1/2
iτ−1/2 (− cos β) + O

(
e−βτ τ−N)

, τ → +∞, (9)

where Pμ
ν (z) is associated Legendre functions or conical functions [3], vol. I.

The key ingredient for our proof will be the following integral with respect to an index of the modified Bessel function:

1

π

∞∫
−∞

τeλτ
(
t + (

1 + t2)1/2)iτ
Kiτ (x)dτ

= x exp
(−x

[(
1 + t2)1/2

cosλ − it sinλ
])[(

1 + t2)1/2
sinλ + it cosλ

]
, x, t > 0 (10)

and 0 � λ < π
2 . It can be deduced, for instance, employing relation (2.16.48.20) in [10] and making differentiation by a

parameter. Finally in this section, for further use let us return to (6) and integrate by parts in the Stieltjes integral subtracting
a simple rational function. Thus we derive
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F (t) =
1∫

0

eixt d

[
?(x) − 2x

1 + x

]
+ 2

1∫
0

eixt

(1 + x)2
dx = F1(t) + O

(
1

t

)
, t > 1, (11)

where

F1(t) = −it

1∫
0

eixt
[

?(x) − 2x

1 + x

]
dx. (12)

2. A solution to Salem’s problem

Our main result can be formulated as follows:

Theorem 2.1. Let t ∈ R. Then
∫ 1

0 eixt d?(x) = o(1), |t| → ∞.

Proof. Without loss of generality we prove the theorem for positive t . So our goal is to estimate F1(t) given by (12) when
t → +∞. First we pass to the limit through equality (10) when λ → π

2 −. This yields

1

π
lim

λ→ π
2 −

∞∫
−∞

τeλτ
(
t + (

1 + t2)1/2)iτ
Kiτ (x)dτ = x

(
1 + t2)1/2

eixt, x, t > 0. (13)

Hence we write F1(t) in the form

F1(t) = t

π i
(
1 + t2

)1/2

1∫
0

[
?(x)

x
− 2

1 + x

]
lim

λ→ π
2 −

∞∫
−∞

τeλτ
(
t + (

1 + t2)1/2)iτ
Kiτ (x)dτ dx. (14)

But since for each x, t > 0 and 0 � λ < π
2 (see (10)) | ∫ ∞

−∞ τeλτ (t + (1 + t2)1/2)iτ Kiτ (x)dτ | � x[t + (1 + t2)1/2] and
∫ 1

0 |?(x)−
2x

1+x |dx � 1 + 2
∫ 1

0
x dx
1+x = 3 − log 4, we can take out the limit in (14) having the representation

F1(t) = t

π i
(
1 + t2

)1/2
lim

λ→ π
2 −

1∫
0

[
?(x)

x
− 2

1 + x

] ∞∫
−∞

τeλτ
(
t + (

1 + t2)1/2)iτ
Kiτ (x)dτ dx. (15)

Our goal now is to invert the order of integration in (15). To do this we employ the uniform inequality for the modified
Bessel function (cf. [5,18])

∣∣Kiτ (x)
∣∣ � x−1/4

√
sinhπτ

, x, τ > 0 (16)

and asymptotic property (5) of the Minkowski question mark function near the origin. Consequently,

1∫
0

∣∣∣∣?(x)

x
− 2

1 + x

∣∣∣∣
∞∫

−∞

∣∣τeλτ
(
t + (

1 + t2)1/2)iτ
Kiτ (x)

∣∣ dτ dx

�
1∫

0

∣∣∣∣?(x)

x
− 2

1 + x

∣∣∣∣ dx

x1/4

∞∫
−∞

|τ | eλτ√| sinhπτ | dτ < ∞, λ ∈
(

0,
π

2

)
.

Hence by Fubini’s theorem (15) becomes

F1(t) = t

π i
(
1 + t2

)1/2
lim

λ→ π
2 −

∞∫
−∞

τeλτ
(
t + (

1 + t2)1/2)iτ
1∫

0

Kiτ (x)

[
?(x)

x
− 2

1 + x

]
dx dτ . (17)

We split the latter integral with respect to τ on two integrals over (−∞, M], [M,∞), where M > 0 is a large fixed number.
Hence we treat the integral over (−∞, M], appealing again to inequality (16) in order to justify a passage to the limit under
the integral sign when λ → π

2 − by virtue of the absolute and uniform convergence with respect to λ ∈ [0,π/2]. Therefore
passing to the limit under the integral sign, we obtain that it vanishes when t → +∞ owing to the Riemann–Lebesgue
lemma since the integrand belongs to L1(−∞, M]. Further, the integral over [M,∞) can be written in the form
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I(t) = t

π i(1 + t2)1/2
lim

λ→ π
2 −

∞∫
M

τeλτ
(
t + (

1 + t2)1/2)iτ [
KL0(τ ) − KL1(τ )

]
dτ , (18)

where we denoted by

KL j(τ ) =
∞∫

0

Kiτ ( j + x)

[
?( j + x)

j + x
− 2

1 + j + x

]
dx, j = 0,1 (19)

modified shifted Kontorovich–Lebedev transforms of the Minkowski question mark function. But the function f (x) =?(x) −
2x

1+x is continuous on [0,∞), f (x) = O (x), x → 0+ and via functional equation (4) and elementary series expansions we get

?(x)

x
− 2

1 + x
= 2

(
1

x
− 1

1 + x

)
− ?(1/x)

x
∼ 2

(
1

x2
− 1

x3

)
+ O

(
1

x4

)
, x → +∞.

Consequently, employing asymptotic formula (9) with β = π
2 we derive

KL0(τ ) = (2π)3/2e−πτ
[

P−3/2
iτ−1/2(0) − P−5/2

iτ−1/2(0)
] + O

(
e−πτ/2τ−3), τ → +∞. (20)

On the other hand, a straightforward application of the same technique developed in [6,9,8] will drive us to an asymptotic
formula of the shifted Kontorovich–Lebedev transform KL1(τ ). Indeed, since

?(1 + x)

1 + x
− 2

2 + x
= 2

(1 + x)(2 + x)
− ?

(
1/(1 + x)

)
1 + x

∼ 2

(
1

x2
− 3

x3

)
+ O

(
1

x4

)
, x → +∞,

then KL1(τ ) = (2π)3/2e−πτ [P−3/2
iτ−1/2(0) − 4P−5/2

iτ−1/2(0)] + O (e−πτ/2τ−3), τ → +∞. Consequently, we find

KL0(τ ) − KL1(τ ) = − 6π e−πτ/2

τ (iτ − 1)(iτ − 2)
+ O

(
e−πτ/2τ−3), τ → +∞. (21)

Substituting this value into the latter integral in (18), we immediately conclude its absolute and uniform convergence with
respect to λ ∈ [0,π/2]. Thus

I(t) = 6 it(
1 + t2

)1/2

∞∫
M

(
t + (

1 + t2
)1/2)iτ

(iτ − 1)(iτ − 2)
dτ + o(1) = O

(
1

log t

)
+ o(1) → 0, t → +∞. (22)

Therefore F1(t) = o(1), t → +∞. Combining with (11) we get the result and complete the proof of the theorem. �
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