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We show that if a discrete random measure on the unit ball of a separable Hilbert space
satisfies the Ghirlanda–Guerra identities then by randomly deleting half of the points and
renormalizing the weights of the remaining points we obtain the same random measure in
distribution up to rotations.
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r é s u m é

Nous montrons que si une mesure aléatoire discrète sur la boule unité d’un espace
de Hilbert séparable satisfait aux identités de Ghirlanda–Guerra, alors en suprimant
aléatoirement la moitié des points et en renormalisant les poids des points restants, on
obtient une mesure de même distribution à une rotation près.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

Let us consider a countable index set A and random probability measure μ on a unit ball B of a separable Hilbert space
H such that μ = ∑

α∈A wαδξα for some random points ξα ∈ B and weights (wα). We will call indices α from the set A
“configuration” and for a function f = f (α1, . . . ,αn) of n configurations we will denote its average with respect to the
measure μ by

〈 f 〉 =
∑

α1,...,αn

wα1 · · · wαn f
(
α1, . . . ,αn). (1)

We say that the random measure μ satisfies the Ghirlanda–Guerra identities [3] if for any n � 2 and any function f that
depends on the configurations α1, . . . ,αn only through the scalar products, or overlaps, R�,�′ = ξα� · ξα�′ for �, �′ � n we
have

E
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f R p
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for any integer p � 1. Random measures satisfying the Ghirlanda–Guerra identities arise as the directing measures (or
determinators in the terminology of [8]) of overlap matrices in the Sherrington–Kirkpatrick model where they can be seen as
the asymptotic analogues of the Gibbs measure. The importance of the asymptotic point of view provided by these measures
was brought to light in [2], even though it was the Aizenman–Contucci stochastic stability [1] and not the Ghirlanda–Guerra
identities that played the main role there. However, subsequently, such random measures satisfying the Ghirlanda–Guerra
identities played an equally important role in the results of [4] and to a less extent of [6].

Our main result is based on a simple observation which extends the invariance theorem from [4]. Consider independent
symmetric Bernoulli random variables (εα)α∈A (taking values ±1 with probability 1/2) and for t ∈ R let us define a random
measure μt = ∑

α∈A wα,tδξα with weights defined by the random change of density

wα,t = wα exp tεα∑
γ ∈A wγ exp tεγ

, (3)

and as in (1) let us denote the average with respect to this measure by

〈 f 〉t =
∑

α1,...,αn

wα1,t · · · wαn,t f
(
α1, . . . ,αn). (4)

The following holds:

Theorem 1.1. If a random measure μ satisfies the Ghirlanda–Guerra identities (2) then for any t ∈ R, any n � 2 and any bounded
function f of the overlaps on n configurations we have E〈 f 〉t = E〈 f 〉.

The main difference here is that the result holds for all t ∈ R compared to |t| < 1/2 as stated in Theorem 4 in [4] which
was sufficient for the main argument there. However, letting t go to infinity we now obtain the following new invariance
property. Let ηα = (εα + 1)/2 be independent random variables, now taking values 1 and 0 with probability 1/2 and let
μ′ = ∑

α∈A w ′
αδξα be the random measure defined by the change of density

w ′
α = wαηα∑

γ ∈A wγ ηγ
. (5)

In other words, we randomly delete half of the point in the support of measure μ and renormalize the weights to define
a probability measure μ′ on the remaining points. The denominator in (5) is non-zero with probability one since it is well
known that unless the measure μ is concentrated at 0 ∈ B (a case we do not consider) it must have infinitely many different
points in the support in order to satisfy (2). Let us define by 〈 f 〉′ the average with respect to μ′ .

Theorem 1.2 (Deletion invariance). If a random measure μ satisfies the Ghirlanda–Guerra identities (2) then E〈 f 〉′ = E〈 f 〉.

Remark 1. In particular, this implies that the measure μ′ also satisfies the Ghirlanda–Guerra identities (2) and, hence, we
can repeat the random deletion procedure as many times as we want. This means that the deletion invariance also holds
with random variables (ηα) taking values 1 and 0 with probabilities 1/2s and 1 − 1/2s correspondingly, for any integer
s � 1.

Remark 2. It is well known that invariance for the averages as in Theorem 1.2 implies that the random measures μ and μ′
have the same distribution, up to rotations. Let (w�)��1 be the weights (wα) arranged in the non-increasing order and let
(ξ�) be the points (ξα) rearranged accordingly, so that μ = ∑

��1 w�δξ�
. Similarly, let μ′ = ∑

��1 w ′
�δξ ′

�
. Then arguing as at

the end of the proof of Theorem 4 in [4] (or Lemma 4 in [5]) one can show that
(
(w�)��1, (ξ� · ξ�′)�,�′�1

) d= ((
w ′

�

)
��1,

(
ξ ′
� · ξ ′

�′
)
�,�′�1

)
(6)

which means that up to rotations the configurations of the random measures μ and μ′ have the same distributions.

Proof of Theorem 1.1. Suppose that | f | � 1. Let ϕ(t) = E〈 f 〉t and by symmetry we only need to consider t � 0. Given
configurations α1,α2, . . . let us denote

Dn = εα1 + · · · + εαn − nεαn+1

and a straightforward computation shows that ϕ′(t) = E〈 f Dn〉t and similarly for all k � 1,

ϕ(k)(t) = E〈 f Dn · · · Dn+k−1〉t .

It was proved in Theorem 4 in [4] (a more streamlined proof was given in Theorem 6.3 in [6]) that if the measure μ satisfies
the Ghirlanda–Guerra identities (2) then

ϕ(k)(0) = 0 for all k � 1. (7)
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It is also easy to see that |Dn| � 2n so that for all t,
∣∣ϕ(k)(t)

∣∣ � 2kn(n + 1) · · · (n + k − 1). (8)

This is all one needs to show that if

ϕ(t) = ϕ(0) and ϕ(k)(t) = 0 for all k � 1 (9)

holds for all t � t0 for some t0 � 0 then it also holds for all t < t0 + 1/2. This will finish the proof of the theorem since
by (7) this holds for t0 = 0. Take any k � 0. Using (8) and (9) for t = t0 and using Taylor’s expansion for a function ϕ(k)(t)
around the point t = t0 we get for any m � 1

∣∣ϕ(k)(t) − ϕ(k)(t0)
∣∣ � sup

t0�s�t

|ϕ(k+m)(s)|
m! |t − t0|m � 2k+mn(n + 1) · · · (n + k + m − 1)

m! |t − t0|m.

If |t −t0| < 1/2 then letting m → ∞ proves that ϕ(k)(t) = ϕ(k)(t0) for all k � 0 and therefore (9) holds for all t < t0 +1/2. �
Proof of Theorem 1.2. Let I = {α ∈ A: εα = 1} and let

Zt =
∑

α∈I

wα + e−2t
∑

α∈Ic

wα

so that

wα,t = wα

Zt

(
I(α ∈ I) + e−2t I

(
α ∈ Ic)). (10)

Then the sum on the right-hand side of (4) can be broken into 2n groups depending on which of the indexes α1, . . . ,αn

belong to I or its complement Ic, for example, the terms corresponding to all indices belonging to I will give

1

Zn
t

∑

α1,...,αn∈I

wα1 · · · wαn f
(
α1, . . . ,αn). (11)

This sum is bounded by one and when t → +∞ it obviously converges to 〈 f 〉′ while the sums corresponding to other
groups, when at least one of the indices belongs to Ic , will converge to zero because of the factor e−2t in (10). By dominated
convergence theorem we get convergence of expectations. �
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