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Sums of distinct integral squares in real quadratic fields
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We show that the elements of the ring of integers of real quadratic fields which are sums
of integral squares are in fact sums of distinct squares, provided their norm is large enough.
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r é s u m é

Nous montrons que les entiers totalement positifs de normes suffisamment grandes sont
des sommes de carrés distincts dans l’anneau des entiers des corps réel quadratique.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In 1948, Sprague [8] showed in a quite elementary way that every integer bigger than 128 can be represented as a sum
of distinct integral squares. He also found all 31 positive integers which cannot be represented as sums of distinct squares:
2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112 and 128.

The second author proved an analogous result for Q(
√

5 ) [6]. But, in general, it is not easy to classify all algebraic
integers which can be represented as sums of distinct integral squares in number fields. Such a result has recently been
obtained for Q(

√
2 ), Q(

√
3 ) and Q(

√
6 ) [4].

Another direction to generalize Sprague’s result is to represent n-ary quadratic forms as sums of distinct squares of
linear forms. That is, we can regard an integer as a unary quadratic form. Sprague’s result is rephrased as follows: kx2 =
(a1x)2 + (a2x)2 + · · · + (ar x)2 with 0 < a1 < a2 < · · · < ar for k > 128.

In this article, we find all integral positive definite binary quadratic forms which cannot be represented as sums of
distinct squares of linear forms. Moreover, using this result, we show that all totally positive integers of sufficiently large
norms are represented as sums of distinct squares in real quadratic fields.

2. Binary forms as sums of distinct squares

We abbreviate a binary form Q (x, y) = ax2 + 2bxy + cy2 by [a,b, c]. We define the discriminant of Q by dQ = ac − b2.
Any positive definite binary form can be reduced to the form [a,b, c] modulo GL(2,Z) with 0 < a � c and 0 � b � a/2.

Suppose that b = b2
1 + b2

2 + · · · + b2
r with 0 � b1 < b2 < · · · < br . Then
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[a,b, c] − [
b2

1,b2
1,b2

1

] − [
b2

2,b2
2,b2

2

] − · · · − [
b2

r ,b2
r ,b2

r

] = [a − b,0, c − b].
If both of a′ = a − b and c′ = c − b can be represented as sums of distinct squares, we are done.

Assume that a′ � 2 and cannot be written as a sum of distinct squares. Then, not both a′ − 2 and a′ − 3 are in Sprague’s
exceptional list. Note that

[2,0,8] = [1,2,4] + [1,−2,4],
[3,0,14] = [1,3,9] + [1,−1,1] + [1,−2,4].

If a � 4 and c > 2(128 + 14), then a′ = a − b � a − a
2 � 2 and c′ = c − b � c − c

2 > 128 + 14. Thus [a′,0, c′], [a′,0, c′] −
[2,0,8] or [a′,0, c′] − [3,0,14] is represented as a sum of distinct squares.

If a < 4 and c > 128 + 5, then b = 0,1 and each form [a,b, c] is a sum of distinct squares as follows:

[1,0, c] = [1,0,0] + [0,0, c],
[2,0, c] = [1,1,1] + [1,−1,1] + [0,0, c − 2],
[2,1, c] = [1,0,0] + [1,1,1] + [0,0, c − 1],
[3,0, c] = [1,0,0] + [1,1,1] + [1,−1,1] + [0,0, c − 2],
[3,1, c] = [1,0,0] + [1,−1,1] + [1,2,4] + [0,0, c − 5].

Now, suppose that b cannot be represented as a sum of distinct squares. Then a � 2b � 4. Note that b − 2 or b − 4 is a
sum of distinct squares. Thus from the equalities

[a,b, c] = [4,2,1] + [a − 4,b − 2, c − 1] = [1,2,4] + [4,2,1] + [a − 5,b − 4, c − 5]
the problem reduces to the previous case if a � 5. But, the form [1,2,4] might already be used, so that we would use the
following equalities selectively when a′ = a − b cannot be written as a sum of distinct squares:

[2,0,8] = [1,2,4] + [1,−2,4],
[2,0,18] = [1,3,9] + [1,−3,9],
[3,0,14] = [1,3,9] + [1,−1,1] + [1,−2,4].

For example, [7,4,151] = [1,2,4] + [4,2,1] + [2,0,146]. But, we cannot use [2,0,8] to reduce [2,0,146] because [1,2,4]
was already used. So we should use [2,0,18] instead of [2,0,8].

Thus if a � 4 + 5 and c > 2(128 + 18) + 5, then [a,b, c] is represented as a sum of distinct squares.
If a < 9, then b = 2,3 and forms [a,b, c] are verified to be sums of distinct squares for c > 128 + 10.

[4,2, c] = [4,2,1] + [0,0, c − 1],
[5,2, c] = [1,0,0] + [4,2,1] + [0,0, c − 1],
[6,2, c] = [1,1,1] + [1,−1,1] + [4,2,1] + [0,0, c − 3],
[6,3, c] = [1,0,0] + [1,1,1] + [4,2,1] + [0,0, c − 2],
[7,2, c] = [1,0,0] + [1,1,1] + [1,−1,1] + [4,2,1] + [0,0, c − 3],
[7,3, c] = [1,0,0] + [1,1,1] + [1,2,4] + [4,0,0] + [0,0, c − 5],
[8,2, c] = [4,0,0] + [4,2,1] + [0,0, c − 1],
[8,3, c] = [1,0,0] + [1,1,1] + [1,2,4] + [1,−2,4] + [4,2,1] + [0,0, c − 10].

Hence finitely many forms remain unchecked. That is, [a,b, c] with 0 � 2b � a � c � 2(128 + 18) + 5.
Table 1 lists all 105 binary forms which cannot be represented as sums of distinct squares. The maximal discriminant

is 160 for [13,3,13] and [5,0,32]. Thus if a binary form has discriminant > 160, then it can be represented as a sum of
distinct squares of linear forms.

3. Algebraic integers as sums of distinct squares

Using the previous result, we characterize algebraic integers of real quadratic fields which can be represented as sums of
distinct squares.

Let D > 1 be a square-free positive integer. Denote the ring of integers in the real quadratic field Q(
√

D ) by O. If

D �≡ 1 (mod 4), then O = Z[√D ]. If D ≡ 1 (mod 4), then O = Z[ 1+√
D ].
2
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Table 1
Binary forms which cannot be represented as a sum of distinct squares of linear forms.

d = 2 : [1,0,2]
d = 3 : [1,0,3]
d = 5 : [2,1,3]
d = 6 : [1,0,6]
d = 7 : [2,1,4], [1,0,7]
d = 8 : [3,1,3], [2,0,4], [1,0,8]
d = 10 : [2,0,5]
d = 11 : [3,1,4], [1,0,11]
d = 12 : [3,0,4], [4,2,4], [1,0,12]
d = 13 : [2,1,7]
d = 15 : [4,1,4], [3,0,5], [2,1,8], [1,0,15]
d = 18 : [1,0,18]
d = 19 : [4,1,5], [1,0,19]
d = 20 : [3,1,7], [2,0,10]
d = 22 : [1,0,22]
d = 23 : [4,1,6], [3,1,8], [2,1,12], [1,0,23]
d = 24 : [4,0,6], [1,0,24]
d = 27 : [4,1,7], [1,0,27]
d = 28 : [4,0,7], [4,2,8], [2,0,14], [1,0,28]
d = 30 : [3,0,10]
d = 31 : [5,2,7], [4,1,8], [2,1,16], [1,0,31]
d = 32 : [6,2,6], [4,0,8], [4,2,9], [3,1,11], [1,0,32]
d = 33 : [1,0,33]
d = 35 : [5,0,7], [3,1,12]
d = 39 : [5,1,8], [6,3,8], [2,1,20]
d = 40 : [5,0,8], [2,0,20]
d = 43 : [4,1,11], [1,0,43]
d = 44 : [5,1,9], [4,2,12], [1,0,44]
d = 47 : [6,1,8], [7,3,8], [4,1,12], [3,1,16], [2,1,24], [1,0,47]
d = 48 : [4,0,12], [4,2,13], [1,0,48]
d = 52 : [2,0,26]
d = 55 : [7,1,8], [8,3,8], [2,1,28]
d = 60 : [8,2,8], [5,0,12], [3,0,20], [2,0,30], [1,0,60]
d = 63 : [8,1,8], [8,3,9], [2,1,32]
d = 67 : [4,1,17], [1,0,67]
d = 70 : [7,0,10]
d = 72 : [1,0,72]
d = 76 : [5,2,16], [1,0,76]
d = 88 : [4,0,22]
d = 92 : [9,4,12], [1,0,92]
d = 96 : [4,2,25], [1,0,96]
d = 108 : [9,3,13], [1,0,108]
d = 112 : [4,2,29], [1,0,112]
d = 128 : [9,4,16], [4,0,32], [4,2,33], [1,0,128]
d = 140 : [12,4,13], [5,0,28]
d = 160 : [13,3,13], [5,0,32]

The ring O has a canonical involution ·̄ sending
√

D to −√
D . If α > 0 and ᾱ > 0 for an integer α ∈ O, α is said to be

totally positive. Obviously, if a number can be represented as a sum of squares, it is totally positive. We denote the set of
totally positive integers by O+ .

Theorem 1. Let D �≡ 1 (mod 4). If α = a + 2b
√

D ∈ O+ satisfies N(α) = αᾱ = a2 − 4b2 D > 160 · 4D + D2, then α is represented
as a sum of distinct squares.

Proof. Note that if an algebraic integer is represented as a sum of squares, the coefficient of
√

D is even.
We choose a suitable integer t ∈ [−(D − 1), D] such that 2D|(a + t). Then a − t is positive and even.
Consider the binary quadratic form

Q (x, y) = a + t

2D
x2 + 2bxy + a − t

2
y2

with discriminant

dQ = a + t

2D
· a − t

2
− b2 = a2 − t2 − 4b2 D

4D
= N(α) − t2

4D
> 160.

Since Q is represented as a sum of distinct squares of linear forms, α = Q (
√

D,1) is represented as a sum of distinct
squares. �
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Every positive definite binary form is represented as a sum of five squares of linear forms [5]. Thus if α = a+2b
√

D ∈ O+
satisfies N(α) > D2, then α can be represented as a sum of five squares by using the same construction as in the above
proof.

Moreover, if D = 2 or 3, then every totally positive integer of the form a + 2b
√

D can be represented as a sum of three
squares [1,7].

Theorem 2. Let D ≡ 1 (mod 4). If α = a + 1+√
D

2 b ∈ O+ satisfies

N(α) = αᾱ = (2a + b)2 − b2 D

4
> 160D + D2

4
,

then α is represented as a sum of distinct squares.

Proof. We choose an integer t ∈ [−(D − 1), D] such that D|(2a + b + t) and b − 2a+b+t
D is even.

Let f (b) = (b2 D + 160 · 4D + D2) − (2b + D)2 = (D − 4)b2 − 4Db + 640D.

This function f has a minimum D(636D−4·640)
D−4 at b = 2D

D−4 . Since D � 5, f (b) > 0. From the norm condition,

(2a + b)2 > b2 D + 160 · 4D + D2 > (2b + D)2.

Thus 2a > b + D � b + t and a > 2a+b+t
4 .

Let A = 2a + b + t . Note that all the coefficients are integers and

a − A(D − 1)

4D
> a − A

4
= a − 2a + b + t

4
> 0.

Consider the binary quadratic form

Q (x, y) = A

D
x2 +

(
b − A

D

)
xy +

(
a − A(D − 1)

4D

)
y2

with discriminant

dQ = A

D

(
a − A(D − 1)

4D

)
− 1

4

(
b − A

D

)2

= (2a + b)2 − b2 D − t2

4D

= 4N(α) − t2

4D
> 160.

Since Q is represented as a sum of distinct squares of linear forms, α = Q ( 1+√
D

2 ,1) is represented as a sum of distinct
squares. �

If α ∈ O+ satisfies N(α) � D2

D−4 + D2

4 , then

f (b) =
(

b2 D + 4D2

D − 4
+ D2

)
− (2b + D)2 = (D − 4)b2 − 4Db + 4D2

D − 4
> 0

for every b ∈ Z. Hence the Q (x, y) is positive definite and α can be represented as a sum of five squares.
Moreover, if D = 5, every totally positive integer can be represented as a sum of three squares [3]. If D > 12, then there

exists a totally positive integer of arbitrarily large norm which cannot be represented as a sum of four squares [2].
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