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We consider self-similar solutions of Smoluchowski’s coagulation equation with a diagonal
kernel of homogeneity γ < 1. We show that there exists a family of second-kind self-
similar solutions with power-law behavior x−(1+ρ) as x → ∞ with ρ ∈ (γ ,1). To our
knowledge this is the first example of a non-solvable kernel for which the existence of
such a family has been established.
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r é s u m é

Nous considérons des solutions autosimilaires de l’équation de coagulation de Smolu-
chowski avec un noyau diagonal d’homogénéité γ < 1. Nous prouvons l’existence d’une
famille de solutions autosimilaires de deuxième type avec comportement à l’infini en
puissance x−(1+ρ) , ρ ∈ (γ ,1). A notre connaissance, ceci constitue le premier exemple
d’existence d’une telle famille pour un noyau non explicitement résoluble.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Smoluchowski’s coagulation equation provides a mean-field description of binary coalescence of clusters. If ξ denotes the
size of a cluster and f (ξ, t) the corresponding number density at time t then the equation is

∂

∂t
f (ξ, t) = 1

2

ξ∫
0

dη K (ξ − η,η) f (η, t) f (ξ−η, t) − f (ξ, t)

∞∫
0

dη K (ξ,η) f (η, t), (1)

where K (ξ,η) is a kernel that describes the rate of the coalescence process.
Here we consider a specific diagonal kernel of homogeneity γ < 1, given by K (ξ,η) = δ(ξ−η)ξ

1+γ , that reduces (1) to

∂

∂t
f (ξ, t) = 1

4

(
ξ

2

)1+γ

f 2
(

ξ

2
, t

)
− ξ1+γ f 2(ξ, t). (2)
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In the following we study self-similar solutions of (2). Such solutions are of the form

f (ξ, t) = t−(1+(1+γ )β)g

(
ξ

tβ

)
(3)

for some positive β , where g satisfies, with x = ξ/tβ , that

−(
1 + (1 + γ )β

)
g − βxg′(x) = 1

4

(
x

2

)1+γ

g2
(

x

2

)
− x1+γ g2(x). (4)

If one looks for solutions with conserved mass, then β is uniquely determined by β = β∗ := 1/(1−γ ). For further reference
we also note that we can integrate the equation in (4) to obtain

βx2 g(x) =
x∫

x/2

s2+γ g2(s)ds + (1−γ )(β − β∗)
x∫

0

sg(s)ds. (5)

Here we assumed implicitly that xg(x) and x2+γ g2(x) are integrable at zero and that limx→0 x2 g(x) = 0. As we will see
below (cf. (9)), these properties will be satisfied by the solutions we are going to consider. Notice also that we have the
well-known power-law solution

g = x−(1+γ ) 1

1−θ
with θ := 2γ −1 < 1. (6)

In [1] a mass-conserving solution of (5), that is a solution for β = β∗ , is constructed that is decaying exponentially fast
and satisfies

g(x) = x−(1+γ )

(
1

1−θ
− cxμ/(1−γ ) + o

(
xμ/(1−γ )

))
as x → 0, (7)

where μ > 0 satisfies a certain transcendental equation. The constant c > 0 is not determined due to an invariance of (4)
under the rescaling g(x) �→ a1+γ g(ax) for any a > 0. In the case of mass-preserving solutions the constant can be fixed by
normalizing the mass of the solution. As is pointed out in [1], the solution is unique in the class of functions satisfying (7),
but uniqueness in general is not known.

In [1] the question is raised whether solutions with algebraic decay, others from the one in (6), exist in analogy to the
ones that have been found in [2] for the constant and additive kernel. More precisely, for example for the constant kernel,
it is established in [2] that there exists a family of self-similar solutions with infinite mass and the decay behavior x−(1+ρ)

for all ρ ∈ (0,1). Furthermore, it is shown that a solution of the coagulation equation converges to the self-similar solution
with decay behavior x−(1+ρ) if and only if the mass-distribution of the initial data is regularly varying with exponent 1 −ρ .
In this note we prove for the diagonal kernel the existence of a corresponding family of self-similar solutions with infinite
mass and asymptotic behavior x−(1+ρ) as x → ∞ with ρ ∈ (γ ,1). Notice, that this includes solutions that are increasing
as x → ∞ if γ < −1. Our proof is simple and exploits strong monotonicity properties of a suitably rescaled version of the
equation for the self-similar solution. We presently do not know, however, how to characterize the domains of attraction
of these self-similar solutions. The analysis in [2] relies on the fact that the Laplace transform of the equation satisfies a
simple ODE, a method that is not applicable in the present situation.

Our main result is the following:

Theorem 1. Let γ < 1 and μ be the unique positive solution of

1 + βμ

2
= 1 − 2γ −1−μ

1 − 2γ −1
. (8)

Then there exists for any β > β∗ a solution g of (5) such that

g(x) = x−(1+γ )

(
1

1−θ
− cxμ/(1−γ ) + o

(
xμ/(1−γ )

))
(9)

as x → 0 with a positive constant c. Furthermore, x−(1+γ ) g(x) is monotonically decreasing and satisfies

g(x) ∼ d

x1+γ +1/β
as x → ∞ (10)

for some positive constant d.

As explained above, the constants c and d in Theorem 1 are not determined due to the invariance of the equation under
appropriate rescaling.
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2. Proof

Our proof proceeds similarly to the one in [1] for the mass-conserving solutions. First, to scale out the singular behavior
as x → 0, we introduce h(x) = g(x)x1+γ such that h solves

−βxh′(x) − h(x) = θh2
(

x

2

)
− h2(x) (11)

or, due to (5),

βx1−γ h(x) =
x∫

x/2

s−γ h2(s)ds + (1−γ )(β − β∗)
x∫

0

s−γ h(s)ds. (12)

Notice, that the power-law solution (6) corresponds to the constant solution h ≡ 1/(1−θ). It is also clear that any solution
of (11) for which limx→0 h(x) exists, that this limit must equal 1/(1−θ). We are now looking for solutions that bifurcate
from this constant at x → 0.

In order to identify the next order behavior, we make the ansatz h(x) = 1/(1−θ) + xμ + o(xμ) as x → 0. Plugging this
into (12), recalling that β∗ = 1/(1−γ ) and rearranging we find that μ must indeed satisfy (8). If we denote by F (μ) =
(1 − 2γ −1−μ)/(1−θ) we see that F (0) = 1 > 1/2. On the other hand, F is increasing and limμ→∞ F (μ) = 1/(1−θ). Hence,
there must be a unique positive solution of (8).

Next, we introduce the function j(x) via

h(x) = 1

1−θ
+ xμ

(−c + j(x)
)
, (13)

where c ∈ R is a constant. Using Eqs. (8) and (12) we obtain that j satisfies

j(x) = 1

β
x−(1−γ +μ)

( x∫
x/2

s−γ +μ 2

1−θ
j(s)ds +

x∫
x/2

s−γ +2μ
(−c + j(s)

)2
ds

+ (1−γ )(β−β∗)
x∫

0

s−γ +μ j(s)ds

)
=: T [ j]. (14)

In order to prove that a local solution of (14) exists, we can proceed analogously to [1]. We only indicate the main steps
here.

We define for some ε ∈ (0,μ) and z > 0 the space

Cε(z) :=
{

f ∈ C[0, z]; f (0) = 0; ‖ f ‖ := sup
x∈[0,z]

x−ε
∣∣ f (x)

∣∣ < ∞
}
.

It is clear that the operator T maps Cε(z) into itself. Next, we are going to show that T maps a ball in Cε(z) of a sufficiently
small radius R into itself if z is sufficiently small. This follows from

∥∥T [ j]∥∥ � 1

β
‖ j‖

(
2

1−θ

1

1−γ +μ+ε

(
1−2γ −1−μ−ε

) + ‖ j‖ 2zμ

1−γ +2μ+2ε

(
1 − 2γ −1−μ−2ε

)
+ c2 2zμ

1−γ +2μ
+ (1−γ )(β−β∗)

1−γ +μ+ε

)
that implies

∥∥T [ j]∥∥ � ‖ j‖
(

1

β(1−γ +μ+ε)

(
2F (μ + ε) + (1−γ )β − 1

)) + C zμ
(‖ j‖2 + 1

)
.

Now we know by the definition of μ that 2F (μ + ε) < 1 + β(μ + ε) and hence

1

β(1−γ +μ+ε)

(
2F (μ + ε) + (1−γ )β − 1

)
<

1

1−γ +μ+ε
(μ+ε+1−γ ) = 1.

Thus, there exists a constant κ = κ(ε) < 1 such that if ‖ j‖ � R we find ‖T [ j]‖ � κ R + C zμ(R2 + 1). For sufficiently small
z and an appropriately small R the right-hand side is bounded by R . Similarly one can show that T is a contraction, we
omit the details here. Hence, a local solution to (14) exists, and thus also to (11). Next, we choose c > 0, and claim that h
is decreasing in a neighborhood of zero. To see this, notice that it follows from (14) that j′(x) exists for x > 0 and that we
have the estimate | j′(x)| � C | j(x)| + Cxμ−1 for x ∈ (0, z). This in turn implies that
x
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h′(x) = μxμ−1(−c + j(x)
) + xμ j′(x) � xμ−1(−cμ + Cμ

∣∣ j(x)
∣∣ + Cxμ

)
.

If z is sufficiently small, we find that h′(x) < 0 for x ∈ (0, z). We are going to show that as long as h exists and is positive
this property is conserved. Indeed, assume that there exists x0 > 0 such that h′(x0) = 0. Then (11) and the fact that h is
decreasing for x < x0 imply that

0 = h(x0)
2 − h(x0) − θh2

(
x0

2

)2

< (1−θ)h2(x0) − h(x0) = h(x0)
(
(1−θ)h(x0) − 1

)
.

As long as h is positive, the right-hand side is strictly negative, since h(x0) < 1/(1−θ) and we obtain the desired contradic-
tion. Moreover, Eq. (12) implies for β � β∗ that h is positive whenever it exists. Hence, using standard results on ordinary
differential equations, we obtain global existence of a solution h to (11) which is strictly decreasing. Since Eq. (11) has the
only stationary points 1/(1−θ) and 0, it also follows that h(x) → 0 as x → ∞.

It remains to show that h(x) ∼ dx−1/β as x → ∞ from which (10) follows. First, due to the invariance of Eq. (11)
under the transformation x → ax for a > 0, we can assume without loss of generality that h(1) = 1/2. Since h satisfies
βxh′(x) + h(x) � h2(x) we have by simple comparison that

h(x) � 1

1 + x1/β
for x � 1. (15)

We now introduce p(x) = x1/βh(x) that solves

βp′(x) = x−(1+1/β)

(
p2(x) − θ22/β p2

(
x

2

))
. (16)

The estimate (15) in particular implies that p(x) � 1 for all x � 1 and thus (16) implies that β|p′(x)| � 2x−(1+1/β) for all
x � 2. Hence |p(x) − p(x0)| � 2x−1/β

0 for any x0 � 2 which implies that limx→∞ p(x) exists. In order to complete the proof
of Theorem 1 it remains to establish that this limit is strictly positive. To this end we note that (12) implies

βx1−γ h(x) > (1−γ )(β − β∗)
x∫

0

s−γ h(s)ds. (17)

If we define Φ(x) := ∫ x
0 s−γ h(s)ds then (17) implies that βxΦ ′(x) − (1 − γ )(β − β∗)Φ(x) > 0. Integrating this last inequality

we obtain (x− (1−γ )(β−β∗)
β Φ(x))′ > 0 and thus

x− (1−γ )(β−β∗)
β Φ(x) � Φ(1) =

1∫
0

s−γ h(s)dx =: c0 > 0

for all x � 1. Thus

Φ(x) � c0x
(1−γ )(β−β∗)

β = c0x1−γ x− 1
β

for x � 1 and plugging this into (17) we find h(x) � c0
β

x− 1
β for all x � 1, that finishes the proof.
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