Bounded p-adic L-functions of motives at supersingular primes

Fonctions L p-adiques bornées des motifs en une place très supersingulière

Andrzej Dąbrowski
Institute of Mathematics, University of Szczecin, ul. Wielkopolska 15, 70-451 Szczecin, Poland

A R T I C L E IN F O

Article history:

Received 10 June 2010
Accepted after revision 15 March 2011
Available online 31 March 2011
Presented by Jean-Pierre Serre
Dedicated to dear Weronika

Abstract

Pollack (2003) [17] proved that the p-adic L-function attached to a modular form $f=$ $\sum a_{n} q^{n}$ at the most supersingular prime p (i.e. $a_{p}=0$) is controlled by two Iwasawa functions and by two half-logarithms. We formulate a (conjectural) generalization of this result to p-adic L-functions attached to motives, and give examples confirming our expectation (symmetric powers and tensor products of modular forms).

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans [17] Pollack (2003) a montré que la fonction L p-adique associée à une forme modulaire $f=\sum a_{n} q^{n}$ en une place très supersingulière $p\left(a_{p}=0\right)$ est contrôlée par deux fonctions d'Iwasawa et deux semi-logarithmes. Nous énoncons une généralisation conjecturale des résultats de Pollack aux fonctions L p-adiques des motifs. Nous donnons divers exemples (produits symétriques et produits tensoriels de formes modulaires) qui confirment cette conjecture.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let f be a modular form of weight k, level N, and character ϵ which is an eigenform for each Hecke operator T_{n} with eigenvalue a_{n}. Fix a prime $p,(p, N)=1$. Let $\alpha_{p}, \alpha_{p}^{\prime}$ be the inverse roots of the local p-polynomial $1-a_{p} x+\epsilon(p) p^{k-1} x^{2}$; assume that $\operatorname{ord}_{p} \alpha_{p} \leqslant \operatorname{ord}_{p} \alpha_{p}^{\prime}$. Put $h=\operatorname{ord}_{p} \alpha_{p}$. Let $L_{p}(f, \cdot)$ be the corresponding p-adic L-function (see [1,18,11]); it is a \mathbb{C}_{p}-analytic function defined on the p-adic Lie group $X_{p}:=\operatorname{Hom}_{\text {cont }}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right)$, in general unbounded (but h-admissible in the sense of Amice and Vélu [1] and Vishik [18]). Here we mean that a \mathbb{C}_{p}-analytic function is first defined on $\{z \in$ $\left.\mathbb{C}_{p}^{\times}:|z-1|_{p}<1\right\}$ as the sum of a convergent power series, and extended to the whole group X_{p} by shifts.
$L_{p}(f, \chi)$ is analytic in χ, and hence we can form its power series expansion about a tame character ψ; we denote this power series by $L_{p}(f, \psi, T)$. For $T=u-1$, we have $L_{p}(f, \psi, u-1)=L_{p}\left(f, \psi \chi_{u}\right)$, where χ_{u} denotes a wild part of χ.

Consider the most supersingular case $a_{p}=0$. Then $\alpha_{p}=-\alpha_{p}^{\prime}$, and hence $\operatorname{ord}_{p} \alpha_{p}=\operatorname{ord}_{p} \alpha_{p}^{\prime}=\frac{k-1}{2}$. Pollack ([17], Theorem 5.1) established the following decomposition result: $L_{p}(f, \psi, T)=L_{p}^{+}(f, \psi, T) \cdot \log _{p}^{+}(T)+L_{p}^{-}(f, \psi, T) \cdot \log _{p}^{-}(T) \cdot \alpha_{p}$, where $L_{p}^{ \pm}(f, \psi, T)$ are bounded, and $\log _{p}^{+}(T) \sim \log _{p}^{-}(T) \sim \log _{p}(1+T)^{(k-1) / 2}$.

In this Note we formulate a conjectural generalization of his result to p-adic L-functions attached to pure critical motives at good, very supersingular primes, and give examples confirming our expectation (symmetric powers and tensor products

[^0]of modular forms). We hope it will provide a useful framework for further research on p-adic L-functions and generalized Main Conjectures in the non-ordinary case.

2. A conjecture on \boldsymbol{p}-adic \boldsymbol{L}-functions of motives

Let M be a pure motive over \mathbb{Q} (with coefficients in \mathbb{Q}, for simplicity) of weight $w=w(M)$ and rank $d=d(M)$, given by Betti, de Rham and l-adic realizations (for each prime l) $H_{B}(M), H_{D R}(M)$ and $H_{l}(M)$ which are, respectively, vector spaces over \mathbb{Q}, \mathbb{Q} and \mathbb{Q}_{l} of dimension d, and which are endowed with the additional structures and comparison isomorphisms (for details see $[8,4,3]$). In particular $H_{B}(M)$ admits an involution $\rho_{B}, H_{l}(M)$ is $G a l(\overline{\mathbb{Q}} / \mathbb{Q})$-module, and there is a Hodge decomposition into \mathbb{C}-vector spaces $H_{B}(M) \otimes \mathbb{C}=\bigoplus_{i+j=w} H^{i, j}(M)$, where, letting ρ_{B} act on the vector space on the left via the first factor in the tensor product, we have $\rho_{B}\left(H^{i, j}(M)\right)=H^{j, i}(M)$. Let $h(i, j)=\operatorname{dim} H^{i, j}(M)$, and let $d^{ \pm}=d^{ \pm}(M)$ be the \mathbb{Q}-dimension of the \pm-subspace of ρ_{B}.

The L-function of M is defined for $\operatorname{Re}(s) \gg 0$ as the Euler product $L(M, s)=\prod_{p} L_{p}\left(M, p^{-s}\right)$, extended over all primes p, and where the local p-polynomial $L_{p}(M, X)^{-1}:=\operatorname{det}\left(1-\rho_{l}\left(\operatorname{Fr}_{p}^{-1}\right) X \mid H_{l}(M)^{I_{p}}\right)=\sum_{i=0}^{d} A_{i}(p) X^{i}$; here ρ_{l} is the representation giving $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-module structure on $H_{l}(M)$, and $\operatorname{Fr}_{p} \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is the Frobenius element at p. Of course, the degree of the Euler factor at p is d only at good primes (outside the ramification set of the motive, with $l \neq p$). We put $\Lambda(M, s)=$ $L_{\infty}(M, s) L(M, s)$, where $L_{\infty}(M, s)$ denotes the factor at infinity.

Let us fix a $\operatorname{sign} \epsilon_{0}= \pm$. Assume that the twisted motive $M(\chi)(m)$ is critical (i.e. that 0 is a critical point for $M(\chi)(m)$ in the sense of Deligne [8]) for some Dirichlet character χ and an integer m satisfying $\epsilon_{0}=\operatorname{sign}\left((-1)^{m} \epsilon(\chi)\right)$. Deligne's period conjecture (see [8]) asserts that the quantity $\frac{\Lambda(M(\chi), m)}{G(\chi)^{d^{\epsilon 0} \Omega\left(\epsilon_{0}, M\right)}}$ is algebraic, where $G(\chi)$ is the Gauss sum, and $\Omega\left(\epsilon_{0}, M\right)$ denotes one of the modified periods of M (see $[8,3]$ for a more precise statement).

Let $P_{N, p}(u, M)$ denote the p-Newton polynomial of M : it is the convex hull of the points $\left(i, \operatorname{ord}_{p} A_{i}(p)\right), 0 \leqslant i \leqslant d$. It is well known, that the length of the horizontal segment of slope k is equal to the number of the inverse roots $\alpha_{p}^{(j)}$ such that $\operatorname{ord}_{p} \alpha_{p}^{(j)}=k$. The Hodge polygon $P_{H}(u, M)$ by definition passes through the points $(0,0), \ldots$, ($\left.\sum_{i^{\prime} \leqslant i} h\left(i^{\prime}, j\right), \sum_{i^{\prime} \leqslant j} i^{\prime} h\left(i^{\prime}, j\right)\right), \ldots$, so that the length of the horizontal segment of slope i equals $h(i, j)$.

Now we formulate a general conjecture on the existence of (unbounded, in general) p-adic L-functions attached to pure critical motives over \mathbb{Q}. For p good for M, we assume, that the inverse roots of $L_{p}(M, X)^{-1}$ are indexed in such a way that $\operatorname{ord}_{p} \alpha_{p}^{(1)} \leqslant \operatorname{ord}_{p} \alpha_{p}^{(2)} \leqslant \cdots \leqslant \operatorname{ord}_{p} \alpha_{p}^{(d)}$. For any Dirichlet character χ and an integer m, we define the p-factor

$$
A_{p}(M(\chi), m)= \begin{cases}\prod_{i=d^{+}+1}^{d}\left(1-\chi(p) \alpha_{p}^{(i)} p^{-m}\right) \prod_{i=1}^{d^{+}}\left(1-\chi^{-1}(p) \alpha_{p}^{(i)^{-1}} p^{m-1}\right) & \text { if } p \nmid c(\chi) \\ \prod_{i=1}^{d^{+}}\left(\frac{p^{m}}{\alpha_{p}^{(i)}}\right)^{\operatorname{ord}_{p} c(\chi)} & \text { if } p \mid c(\chi)\end{cases}
$$

We use the following invariant (generalized Hasse invariant of M, introduced by the author in 1991; see [7] or [13], p. 266): $h_{p}(M):=P_{N, p}\left(d^{+}, M\right)-P_{H}\left(d^{+}, M\right)$. It is known (Katz-Mazur) that $P_{N, p}(u, M) \geqslant P_{H}(u, M)$.

Let us fix a sign $\epsilon_{0}= \pm$. Let $\left[m_{\star}, m^{\star}\right]$ be the critical strip for M, where $m_{\star}=\max \{j: \exists j, k, j<k$ such that $h(j, k) \neq 0\}+1$, and $m^{\star}=\min \{j: \exists j, k, j>k$ such that $h(j, k) \neq 0\}$. We fix embeddings $\overline{\mathbb{Q}} \rightarrow \mathbb{C}$ and $\overline{\mathbb{Q}} \rightarrow \mathbb{C}_{p}$. Let $x_{p}: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{C}_{p}^{\times}$denote the inclusion.

Conjecture 1. (See [7,13].) There exists a \mathbb{C}_{p}-meromorphic function $L_{p}^{\left(\epsilon_{0}\right)}: X_{p} \rightarrow \mathbb{C}_{p}$ such that
(i) for all but a finite number of pairs $(m, \chi) \in \mathbb{Z} \times X_{p}^{\text {tors }}$ such that $M(\chi)(m)$ is critical and $\epsilon_{0}=\operatorname{sgn}\left((-1)^{m} \epsilon(\chi)\right)$, we have

$$
L_{p}^{\left(\epsilon_{0}\right)}\left(\chi x_{p}^{m}\right)=G(\chi)^{-d^{\epsilon_{0}(M)}} A_{p}(M(\chi), m) \frac{\Lambda(M(\chi), m)}{\Omega\left(\epsilon_{0}, M\right)}
$$

(ii) if $h(w / 2, w / 2)=0$, then $L_{p}^{\left(\epsilon_{0}\right)}$ is holomorphic; otherwise the function $\prod_{\xi}\left(x\left(g_{0}\right)-\xi\left(g_{0}\right)\right)^{n(\xi)} L_{p}^{\left(\epsilon_{0}\right)}(x)$ is holomorphic, where ξ runs over finite set of p-adic characters, $n(\xi)$ are positive integers, and $g_{0} \in \mathbb{Z}_{p}^{\times}$;
(iii) if $P_{N, p}\left(d^{+}, M\right)=P_{H}\left(d^{+}, M\right)$, then the holomorphic function in (ii) is bounded;
(iv) the function from (ii) is holomorphic of the type $O\left(\log _{p}^{h_{p}(M)}\right.$) and can be represented as the Mellin transform of an $h_{p}(M)$ admissible measure.

Remarks. (i) Conjecture 1 extends the conjecture of Coates and Perrin-Riou [3,4], where they have formulated such a conjecture if p is good ordinary for M. In this case, in particular, the p-Newton and Hodge polygons coincide. (ii) The condition in part (iii) of Conjecture 1 is called the condition of Dabrowski-Panchishkin (see also [16]). Here is an example where $P_{N, p}\left(d^{+}, M\right)=P_{H}\left(d^{+}, M\right)$, but $P_{N, p}(u, M) \not \equiv P_{H}(u, M): M=M(f) \otimes M(g)$, where f, g are elliptic cusp forms of weights $w(f)>w(g)$ and where p is ordinary for f but supersingular for g. (iii) Conjecture 1 has been proved for Tate motive, and in the following cases: $M=\operatorname{Sym}^{m} M(f), m=1,2,3$ (see $\left.[1,18,11,6,2]\right), M=M(f) \otimes M(g), w(f)>w(g)$ (see [12]), and $M=M\left(f_{1}\right) \otimes M\left(f_{2}\right) \otimes M\left(f_{3}\right), w\left(f_{2}\right)+w\left(f_{3}\right)>w\left(f_{1}\right)+1$ (see [2]).

3. Bounded \boldsymbol{p}-adic \boldsymbol{L}-functions of motives at supersingular primes

Assume, as before, that p is good for M, and that the inverse roots are indexed in such a way that ord ${ }_{p} \alpha_{p}^{(1)} \leqslant \operatorname{ord}_{p} \alpha_{p}^{(2)} \leqslant$ $\cdots \leqslant \operatorname{ord}_{p} \alpha_{p}^{(d)}$. Let $L_{p}^{\left(\epsilon_{0}\right)}$ denote the corresponding p-adic L-function given by Conjecture 1 . We can reformulate this conjecture in terms of power series in T, defining $L_{p}(M, \psi, T)$ as $L_{p}^{\left(\epsilon_{0}\right)}\left(\psi \chi_{(1+T)}\right)$, where ψ is a fixed tame character such that $\psi(-1)=\epsilon_{0}$.

Let $\Phi_{k}(T)$ be the k-th cyclotomic polynomial. Fix a topological generator γ of $1+q \mathbb{Z}_{p}$, where $q=p$ for odd primes p, and $q=4$ for $p=2$. For any positive integer m, we define two power series in $\mathbb{Q}_{p}[[T]]$:

$$
\log _{p, m}^{+}(T):=\frac{1}{p} \prod_{n=1}^{\infty}\left(\frac{\left.\Phi_{p^{2 n}\left(\gamma^{-m}\right.}(1+T)\right)}{p}\right), \quad \log _{p, m}^{-}(T):=\frac{1}{p} \prod_{n=1}^{\infty}\left(\frac{\Phi_{p^{2 n-1}}\left(\gamma^{-m}(1+T)\right)}{p}\right)
$$

The power series $\log _{p}^{ \pm}(M, T):=\prod_{m=m_{\star}}^{m^{\star}} \log _{p, m}^{ \pm}(T)$ are convergent on the open unit disc, and the only zeros of $\log _{p}^{+}(M, T)$ (resp. $\left.\log _{p}^{-}(M, T)\right)$ are simple zeros at $\gamma^{m} \zeta_{p^{2 n}}-1\left(\right.$ resp. $\left.\gamma^{m} \zeta_{p^{2 n-1}}-1\right)$ for $m_{\star} \leqslant m \leqslant m^{\star}$ and $n \geqslant 1$, where $\zeta_{p^{m}}$ denotes a primitive p^{m}-th root of unity.

We say that a prime p is very supersingular for M, if it is good for $M, h_{p}(M)=\frac{m^{\star}-m_{\star}+1}{2}$, and $\prod_{m=1}^{d^{+}} \alpha_{p}^{(m)}=-\prod_{m=1}^{d^{+}} \alpha_{p}^{\left(i_{m}\right)}$ for some other ordering of the inverse roots, still in such a way that $\operatorname{ord}_{p} \alpha_{p}^{\left(i_{1}\right)} \leqslant \operatorname{ord}_{p} \alpha_{p}^{\left(i_{2}\right)} \leqslant \cdots \leqslant \operatorname{ord}_{p} \alpha_{p}^{\left(i_{d}\right)}$. It corresponds to Pollack's condition $\alpha_{p}=-\alpha_{p}^{\prime}$ in the case of modular forms.

Conjecture 2. Assume that a prime p is very supersingular for M. Then $L_{p}(M, \psi, T)=L_{p}^{+}(M, \psi, T) \cdot \log _{p}^{+}(M, T)+\prod_{i=1}^{d^{+}} \alpha_{p}^{(i)}$. $L_{p}^{-}(M, \psi, T) \cdot \log _{p}^{-}(M, T)$, where $L_{p}^{ \pm}(M, \psi, T)$ are bounded.

Theorem 1. Conjecture 1 implies Conjecture 2.

Proof. We imitate the proof of Theorem 5.1 in [17]. Define

$$
G_{\psi}^{+}(M, T):=\frac{L_{p}(M, \psi, T)+L_{p}^{\star}(M, \psi, T)}{2}, \quad G_{\psi}^{-}(M, T):=\frac{L_{p}(M, \psi, T)-L_{p}^{\star}(M, \psi, T)}{2 \prod_{i=1}^{d^{+}} \alpha_{p}^{(i)}}
$$

where $L_{p}^{\star}(M, \psi, T)$ denotes p-adic L-function corresponding to the second ordering of the inverse roots. The interpolation property from Conjecture 1 forces $G_{\psi}^{+}\left(M, \gamma^{j} \zeta_{p^{2 n}}-1\right)=0$ and $G_{\psi}^{-}\left(M, \gamma^{j} \zeta_{p^{2 n-1}}-1\right)=0$ for $m_{\star} \leqslant j \leqslant m^{\star}$ and $n>0$. Defining $L_{p}^{ \pm}(M, \psi, T):=\frac{G_{\psi}^{ \pm}(M, T)}{\log _{p}^{ \pm}(M, T)}$, we are done.

Remarks. (i) In a case $M=M(f)$ we obtain the plus/minus p-adic L-functions constructed by Pollack. Proof of Theorem 1 gives (unconditional) construction of plus/minus p-adic L-functions attached to $\operatorname{Sym}^{m} M(f)(m=2,3), M(f) \otimes M(g)$, and $M\left(f_{1}\right) \otimes M\left(f_{2}\right) \otimes M\left(f_{3}\right)$ (see the end of Section 2). (ii) In a recent work by Lei, Loeffler and Zerbes [10], the authors generalize Pollack's decomposition for arbitrary modular forms in the very supersingular case and apply this to Iwasawa's Main Conjecture. (iii) Park and Shahabi [15], and Zhang [19] used the p-adic L-functions from [5] to construct plus/minus p-adic L-functions for Hilbert modular forms. (iv) There exists a variant of Conjecture 1 for motives over totally real number fields, and we can formulate a variant of Conjecture 2 for motives over totally real number fields as well [14]. (v) By a theorem of Elkies [9], there are infinitely many supersingular primes for a given elliptic curve defined over \mathbb{Q}, and hence for the corresponding newform of weight two. On the other hand, Lehmer's conjecture says that $\tau(n) \neq 0$ for any n, where $\Delta=\sum \tau(n) q^{n}$ denote the unique normalized newform of level one and weight 12.

References

[1] Y. Amice, J. Vélu, Distributions p-adiques associées aux séries de Hecke, Astérisque 24-25 (1975) 119-131.
[2] S. Böcherer, A.A. Panchishkin, Admissible p-adic measures attached to triple products of elliptic cusp forms, Doc. Math. Extra Vol. (2006) 77-132.
[3] J. Coates, On p-adic L-functions, Sém. Bourbaki 701 (1987-1988), Astérisque 177-178 (1989) 33-59.
[4] J. Coates, B. Perrin-Riou, On p-adic L-functions attached to motives over \mathbb{Q}, Adv. Stud. Pure Math. 17 (1989) 23-54.
[5] A. Dąbrowski, p-Adic L-functions of Hilbert modular forms, Ann. Inst. Fourier 44 (1994) 1025-1041.
[6] A. Dąbrowski, D. Delbourgo, S-adic L-functions attached to the symmetric square of a newform, Proc. London Math. Soc. 74 (1997) $559-611$.
[7] A. Dombrowski (Dąbrowski), Admissible p-adic L-functions of automorphic forms, Moscow Univ. Math. Bull. 48 (2) (1993) 6-10.
[8] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math. 33 (2) (1979) 313-346.
[9] N. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over \mathbb{Q}, Invent. Math. 89 (1987) 561-567.
[10] A. Lei, D. Loeffler, S. Zerbes, Wach modules and Iwasawa theory of modular forms, Asian J. Math. 14 (2010) 475-528.
[11] B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986) 1-48.
[12] My Vihn Quang, Convolutions p-adiques non-bornées de formes modulaires de Hilbert, C. R. Acad. Sci. Paris 315 (1992) $1121-1124$.
[13] A.A. Panchishkin, Admissible non-archimedean standard zeta functions associated with Siegel modular forms, Proc. Symp. Pure Math. 55 (2) (1994) 251-292.
[14] A.A. Panchishkin, Motives over totally real fields and p-adic L-functions, Ann. Inst. Fourier 44 (1994) 989-1023.
[15] J. Park, S. Shahabi, Plus/minus p-adic L-functions for Hilbert modular forms, preprint, 2009.
[16] B. Perrin-Riou, Fonctions L p-adiques des représentations p-adiques, Astérisque 229 (1995), 198 pp.
[17] R. Pollack, On the p-adic L-functions of a modular form at a supersingular prime, Duke Math. J. 118 (2003) 523-558.
[18] M.M. Vishik, Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.) 99 (141) (1976) 248-260.
[19] B. Zhang, On the p-adic L-function of Hilbert modular forms at supersingular primes, J. Number Theory 131 (2011) 419-439.

[^0]: E-mail address: dabrowsk@wmf.univ.szczecin.pl.

