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r é s u m é

Nous présentons de nouvelles propriétés structurelles de fonctions convexes de rang 1 et
1-homogènes, ainsi que certaines conséquences.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Questions about sharp integral estimates for derivatives of mappings can often be recast as questions about certain
semiconvexity properties of associated integrands (we refer the reader to [7] for a survey of the relevant convexity notions
and their roles in the calculus of variations). Particularly fascinating examples of the utility of this viewpoint are presented
in [9], where the fact that rank-1 convexity is a manageable and necessary condition for quasiconvexity leads to a long list of
tempting conjectures, all of which — if proven — would have significant impact on the foundations of Geometric Function
Theory in higher dimensions. The obstacle to success is that rank-1 convexity in general does not imply quasiconvexity. This
negative result, known as Morrey’s conjecture [15], was established in [18]. It does, however, not exclude the possibility that
some of these semiconvexity notions agree within more restricted classes of integrands having natural homogeneity prop-
erties. A very interesting case being the positively 1-homogeneous integrands. Their semiconvexity properties correspond to
L1-estimates, and are therefore difficult to establish using interpolation or other harmonic analysis tools.

The purpose of this Note is to announce the results of [11] about new structural properties of such integrands. In
particular it is shown (Theorem 1) that a positively 1-homogeneous and rank-1 convex integrand must be convex at 0
and at all rank-1 matrices. This class of integrands has been investigated several times previously, see e.g. [8] or the older
work [16], where it was shown they are not necessarily convex at rank-2 matrices (and hence our result is sharp). The
surprising automatically improved convexity at all matrices of rank at most one remained, however, unnoticed.

The result can be viewed as a generalization of Ornstein’s L1-non-inequality (see Theorem 2), and in particular the ap-
proach allows also a streamlined and very elementary proof of the original Ornstein’s result. The link between an Ornstein
type result, concerning the failure of the L1-version of Korn’s inequality, and semiconvexity properties of the associated
integrand — though expressed in a dual formulation — was observed already in [5]. There it was utilized in an ad-hoc
construction which required a very sophisticated refinement in [6], where it was transferred from an essentially two-
dimensional situation into three dimensions. Our arguments handle these situations with ease, see Theorem 3 below.
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Due to concentration effects on rank-1 matrices, see [1], our result seems tailored to simplify, and, in fact, was motivated
by the characterization of BV gradient Young measures given in [12] (see [11] for more details).

The key result is best stated in abstract terms, and we pause to introduce the requisite terminology. Let V be a finite-
dimensional real vector space and D a balanced cone that spans V (so tx ∈ D for all x ∈ D, t ∈ R, and D contains a basis
for V). A real-valued function F : V → R is D-convex [13] provided its restrictions to lines in directions of D are convex:
the functions R � t �→ F (x + ty) are convex for all x ∈ V and all y ∈ D. The function F is positively 1-homogeneous provided
F (tx) = t F (x) for all t > 0 and all x ∈ V. Finally we say that F has linear growth at infinity if there exist a norm ‖ · ‖ on V
and a constant c > 0 such that |F (x)| � c(‖x‖ + 1) holds for all x ∈ V.

Theorem 1. Let V be a finite-dimensional real vector space and let D be a balanced cone that spans V. If F : V → R is D-convex, of
linear growth at infinity, and positively 1-homogeneous, then F is convex at each point of D (so by 1-homogeneity, for each x0 ∈ D
there exists a linear function � : V → R satisfying �(x0) = F (x0) and F � �).

We remark that the conclusion remains unchanged if the function is only defined on an open convex cone in V. The
prototypical examples to have in mind for D are the rank-1 cone when V = R

N×n , the space of first derivatives or, see
below, when V is the space of kth order derivatives of maps from R

n to R
N .

The full proof is presented in [11]. However, if we additionally assume that F is differentiable at x0 ∈ D \ {0}, then the
proof is very easy:

Proof of Theorem 1 under additional differentiability assumption. Assume that F is differentiable at x0 ∈ D \ {0}. Fix a
finitely supported probability measure μ on V with center of mass at x0. We must show I := ∫

V(F − F (x0))dμ � 0. Let
A : V → R be a linear function with F (x0) = A(x0), so that by homogeneity also F = A on the half-line {tx0: t > 0}. Clearly,
I is unchanged if we replace F by F − A, hence we may assume that F = 0 on the half-line {tx0: t > 0}. Now the key is
to observe that F (x) � F (x + x0) for all x. Indeed, this is seen to be a consequence of D-convexity and linear growth as
follows. First, linear growth and the fact that D spans V gives Lipschitz continuity in a standard way (see, e.g. [2] and [11]
for details): for a constant L and a norm ‖ · ‖, |F (x) − F (y)| � L‖x − y‖ for all x, y ∈ V. Next, for x ∈ V, λ ∈ (0,1), using
convexity in the x0-direction, and then Lipschitz continuity yield

F (x + x0) � (1 − λ)F (x) + λF

(
x + 1

λ
x0

)
� (1 − λ)F (x) + λ

(
F

(
1

λ
x0

)
+ L‖x‖

)
= (1 − λ)F (x) + λL‖x‖,

and the observation follows upon letting λ ↘ 0. To conclude the proof rewrite I = ∫
V F (tx)/t dμ for t > 0, and hence, by the

above observation and since F (x0) = 0,

I �
∫
V

F (tx + x0) − F (x0)

t
dμ(x)

t→0→
∫
V

F ′(x0)[x]dμ(x) = F ′(x0)[x0] = F (x0) = 0.

Finally, by homogeneity it follows that F is convex at all points of the half-line {tx0: t � 0}. �
A remarkable result of Ornstein [17] states that given a set of linearly independent linear homogeneous constant-

coefficient differential operators in n variables of order k, say B , Q 1, . . . , Q m , and any number K > 0, there is a C∞ smooth
function f vanishing outside the unit cube such that

∫ |B f | > K and
∫ |Q j f | < 1 for all 1 � j � m.

This result convincingly manifests the fact that estimates for differential operators, usually based on Fourier multipliers
and Calderon–Zygmund operators, can be obtained for all Lp , p ∈ (1,∞) by interpolation and (more directly) even for the
weak-L1 spaces but fail to extend to the limit case p = 1. Ornstein used his result to answer a question by L. Schwarz by
constructing a distribution in the plane that was not a measure but whose first order partial derivatives were distributions of
order one. He then gave a very technical and rather concise proof of his statement for general dimensions n and degree k.
Whereas the more transparent first part of his paper finally received the recognition it deserved (e.g. for proving non-
solvability of div Φ = f ∈ L∞ with Φ ∈ W1,∞ see the nice duality argument in [14] and [3]), its higher order version was by
the same authors not used in a very similar situation ([4]).

Our main result not only gives a simple and convincing proof of all these so-called L1-non-inequalities, but also persists
if we admit vector-valued maps and certain nonlinear differential expressions. Let us state a special version. We denote
by C∞

c (Rn,R
N ) the space of compactly supported C∞ maps from R

n into R
N , whose kth derivatives Dk f (x) are for every

x ∈ R
n in Lk

s (R
n,R

N ), the space of symmetric k-linear transformations from R
n to R

N .

Theorem 2. Let P : Lk
s (R

n,R
N ) → R be a continuous and 1-homogeneous function (i.e., P (tξ) = |t|P (ξ) for t ∈ R and all ξ ). Then∫

Rn P (Dk f (x))dx � 0 for all f ∈ C∞
c (Rn,R

N ), if and only if P (ξ) � 0 for all ξ ∈ Lk
s (R

n,R
N ).

Proof. Only one implication needs comment. By assumption
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Q (ξ) := inf
ϕ∈C∞

c ((0,1)n,RN )

∫
(0,1)n

P
(
ξ + Dkϕ(x)

)
dx

equals 0 at ξ = 0. It is then easily checked that Q is real-valued and 1-homogeneous. By a standard argument (see [11]
for details) Q is D-convex, where the rank-1 cone, D := {b ⊗ ⊗k a: a ∈ R

n,b ∈ R
N }, is a balanced spanning cone. From

Theorem 1 we deduce that Q is convex at 0, and as P � Q with P (0) = Q (0) = 0 also P is convex at 0. The conclusion,
P � 0, now follows from the 1-homogeneity. �

To see that Theorem 2 implies Ornstein’s non-inequality, including a natural vector-valued version, note that B f =
B̃(Dk f ), Q j f = Q̃ j(Dk f ) for all f ∈ C∞

c (Rn,R
N ), where B̃ , Q̃ j : Lk

s (R
n,R

N ) → R
� are linear. Now Ornstein’s non-inequality

amounts to equivalence of the statements:

(i) There exists a linear C : R
�m → R

� such that for all ξ ∈ Lk
s (R

n,R
N ), B̃(ξ) = C(Q̃ 1(ξ), . . . , Q̃ m(ξ)).

(ii) There exists c > 0 such that for all f ∈ C∞
c (Rn,R

N ), ‖B f ‖L1 � c
∑m

j=1 ‖Q j f ‖L1 .

We assume that (ii) holds and deduce (i): Define P (ξ) := c
∑m

j=1 |Q̃ j(ξ)| − |B̃(ξ)| for ξ ∈ Lk
s (R

n,R
N ), and note that P is a

continuous, 1-homogeneous function to which Theorem 2 applies. Accordingly, P is a nonnegative function, and hence the
inclusion ker B̃ ⊃ ⋂

ker Q̃ j must hold for the kernels. A standard linear algebra argument allows us to conclude (i).
It is well-known that the distributional Hessian of a real-valued convex function is a (matrix-valued) measure. The

natural question arises if this is valid also for the semiconvexity notions important in the vectorial calculus of variations. In
[6] a fairly complicated construction was introduced to show that this is not true for rank-1 convex functions defined on
symmetric 2 × 2 matrices.

Applying the ideas outlined above to the negative of the Euclidean norm on the open cone of strictly rank-1 convex
second gradients we show in combination with [10] (see [11]):

Theorem 3. Let n > 1 be an integer. There exists a rank-1 convex function F : R
n×n
sym → R whose distributional Hessian F ′′ is not a

bounded measure in any open nonempty subset O of R
n×n
sym :

sup
∫
O

F
∂2Φ

∂xij∂xi′ j′
= ∞,

where the supremum is over all Φ ∈ C∞
c (O ) with sup |Φ| � 1 and i, j, i′, j′ ∈ {1, . . . ,n}.
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