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We show that the displacement and strain formulations of the displacement–traction
problem of three-dimensional linearized elasticity can be viewed as Legendre–Fenchel
dual problems to the stress formulation of the same problem. We also show that each
corresponding Lagrangian has a saddle-point, thus fully justifying this new approach to
elasticity by means of Legendre–Fenchel duality.
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r é s u m é

On montre que les formulations en déplacements et en déformations du problème de
l’élasticité linéarisée tri-dimensionnelle avec des conditions aux limites mixtes peuvent être
vues comme des problèmes duaux de Legendre–Fenchel de la formulation en contraintes
de ce même problème. On montre également que chacun des Lagrangiens correspondants
a un point-selle, justifiant ainsi complètement cette nouvelle approche de l’élasticité au
moyen de la dualité de Legendre–Fenchel.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Legendre–Fenchel duality

All vector spaces, matrices, etc., considered in this Note are real. The dual space of a normed vector space X is denoted
by X∗ , and X∗ 〈·,·〉X designates the associated duality. The bidual space of X is denoted by X∗∗; if X is a reflexive Banach
space, X∗∗ will be identified with X by means of the usual canonical isometry. The indicator function I A of a subset A of a
set X is the function I A defined by I A(x) := 0 if x ∈ A and I A(x) := +∞ if x /∈ A. A function g : X → R ∪ {+∞} is proper if
{x ∈ X; g(x) < +∞} 	= ∅.

Let Σ be a normed vector space and let g : Σ → R ∪ {+∞} be a proper function. The Legendre–Fenchel transform of g is
the function g∗ : Σ∗ → R ∪ {+∞} defined by

g∗ : e ∈ Σ∗ → g∗(e) := sup
σ∈Σ

{
Σ∗ 〈e,σ 〉Σ − g(σ )

}
.

The next theorem summarizes some basic properties of the Legendre–Fenchel transform when the space Σ is a reflexive
Banach space. For proofs, see, e.g., Ekeland and Temam [7] or Brezis [2]. The equality g∗∗ = g constitutes the Fenchel–Moreau
theorem.
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Theorem 1.1. Let Σ be a reflexive Banach space, and let g : Σ → R ∪ {+∞} be a proper, convex, and lower semi-continuous function.
Then the Legendre–Fenchel transform g∗ : Σ∗ → R ∪ {+∞} of g is also proper, convex, and lower semi-continuous. Let

g∗∗ : σ ∈ Σ∗∗ → g∗∗(σ ) := sup
e∈Σ∗

{
Σ∗ 〈e,σ 〉Σ − g∗(e)

}
denote the Legendre–Fenchel transform of g∗ (recall that X∗∗ is here identified with X ). Then g∗∗ = g.

Given a minimization problem infσ∈Σ G(σ ), called (P ), with a function G : Σ → R ∪ {+∞} of the specific form given in
Theorem 1.2 below, the following simple result will be the basis for defining two different dual problems of problem (P ). The
functions L and L̃ defined in the next theorem are the Lagrangians associated with the minimization problem (P ).

Theorem 1.2. Let Σ and V be two reflexive Banach spaces, let g : Σ → R ∪ {+∞} and h : V ∗ → R ∪ {+∞} be two proper, convex,
and lower semi-continuous functions, let Λ : Σ → V ∗ be a linear and continuous mapping, let the function G : Σ → R ∪ {+∞} be
defined by

G : σ ∈ Σ → G(σ ) := g(σ ) + h(Λσ),

and finally, let the two functions

L : Σ × Σ∗ → {−∞} ∪ R ∪ {+∞} and L̃ : Σ × V → {−∞} ∪ R ∪ {+∞}
be defined by

L : (σ , e) ∈ Σ × Σ∗ → L(σ , e) := Σ∗ 〈e,σ 〉Σ − g∗(e) + h(Λσ),

L̃ : (σ , v) ∈ Σ × V → L̃(σ , v) := g(σ ) + V ∗ 〈Λσ, v〉V − h∗(v).

Then

inf
σ∈Σ

G(σ ) = inf
σ∈Σ

sup
e∈Σ∗

L(σ , e) = inf
σ∈Σ

sup
v∈V

L̃(σ , v).

A key issue then consists in deciding whether the infimum found in problem (P ) is equal to the supremum found in
either one of its dual problems, i.e., for instance in the case of the first dual problem (to fix ideas), whether

inf
σ∈Σ

G(σ ) = sup
e∈Σ∗

G∗(e), or equivalently, inf
σ∈Σ

sup
e∈Σ∗

L(σ , e) = sup
e∈Σ∗

inf
σ∈Σ

L(σ , e).

If this is the case, the next issue consists in deciding whether the Lagrangian L possesses a saddle-point (σ , e) ∈ Σ × Σ∗ ,
i.e., that satisfies

inf
σ∈Σ

sup
e∈Σ∗

L(σ , e) = inf
σ∈Σ

L(σ , e) = L(σ , e) = sup
e∈Σ∗

L(σ , e) = sup
e∈Σ∗

inf
σ∈Σ

L(σ , e).

This is precisely the type of questions addressed in this Note, the point of departure (P ) being a classical quadratic
minimization problem arising in three-dimensional linearized elasticity.

2. Functional analytic preliminaries

Latin indices vary in the set {1,2,3}, save when they are used for indexing sequences, and the summation convention
with respect to repeated indices is systematically used in conjunction with this rule.

A domain in R
3 is a bounded, connected, open subset of R

3 whose boundary, denoted by Γ , is Lipschitz-continuous, the
set Ω being locally on a single side of Γ .

Spaces of functions, vector fields in R
3, and 3 × 3 symmetric matrix fields, defined over an open subset of R

3 are
respectively denoted by italic capitals, boldface Roman capitals, and special Roman capitals. The inner-product of a ∈ R

3

and b ∈ R
3 is denoted by a · b. The notation s : t := si jti j designates the matrix inner-product of two matrices s := (si j) and

t := (ti j) of order three.
The inner-product in the space L

2(Ω) is given by (σ ,τ ) ∈ L
2(Ω) × L

2(Ω) → ∫
Ω

σ : τ dx, and ‖ · ‖L2(Ω) denotes the
corresponding norm. The space L

2(Ω) will be identified with its dual space. The duality bracket between the space H 1/2(Γ )

and its dual space will be denoted by 〈·,·〉Γ := H−1/2(Γ )〈·,·〉H 1/2(Γ ) .
For any vector field v = (vi) ∈ D ′(Ω), the associated linearized strain tensor is the symmetric matrix field ∇s v ∈ D

′(Ω)

defined by ∇s v := 1
2 (∇v T + ∇v).

We now recall some functional analytic preliminaries, due to Geymonat and Suquet [10] and Geymonat and Krasucki
[8,9]. Given a domain Ω in R

3, define the space
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H(div;Ω) := {
μ ∈ L

2(Ω); divμ ∈ L2(Ω)
}
.

The set Ω being a domain, the density of the space C
∞(Ω) in the space H(div;Ω) then implies that the mapping μ ∈

C
∞(Ω) → μν|Γ can be extended to a continuous linear mapping from the space H(div;Ω) into H−1/2(Γ ), which for

convenience will be simply denoted by μ ∈ H(div;Ω) → μν ∈ H−1/2(Γ ).

Theorem 2.1. The Green formula∫
Ω

μ : ∇s v dx +
∫
Ω

(divμ) · v dx = 〈μν, tr v〉Γ

holds for all μ ∈ H(div;Ω) and all v ∈ H 1(Ω).

The following extension of the classical Donati theorem plays an essential role in the sequel.

Theorem 2.2. Let Ω be a domain in R
3 , let Γ0 and Γ1 be two relatively open subsets of Γ such that dΓ -meas Γ0 > 0, Γ = Γ 0 ∪ Γ 1 ,

and Γ0 ∩ Γ1 = ∅, and let there be given a matrix field e ∈ L
2(Ω). Then there exists a vector field

v ∈ V := {
v ∈ H 1(Ω); tr v = 0 on Γ0

}
such that e = ∇s v if and only if∫

Ω

e : μdx = 0 for all μ ∈ M,

where the space M is defined as

M := {
μ ∈ L

2(Ω); divμ = 0 in H−1(Ω), 〈μν, tr v〉Γ = 0 for all v ∈ V
}
.

Besides, such a vector field v ∈ V is uniquely defined.

3. Three different formulations of the displacement–traction problem of three-dimensional linearized elasticity as a
minimization problem

Let Ω be a domain in R
3 and let Γ0 and Γ1 be two relatively open subsets of Γ := ∂Ω that satisfy dΓ -meas Γ0 > 0,

Γ = Γ 0 ∪ Γ 1, and Γ0 ∩ Γ1 = ∅. The following assumptions are made in the rest of the Note. The set Ω is the reference
configuration of a linearly elastic body, characterized by its elasticity tensor field A = (Aijk�) with components Aijk� ∈ L∞(Ω)

satisfying the symmetry relations Aijk� = A jik� = Ak�i j . The tensor field A is uniformly positive-definite almost-everywhere
in Ω . Hence there exists a tensor field B = (Bijk�), called the compliance tensor field, that is the inverse of A and thus such
that Bijk� ∈ L∞(Ω) and B is also uniformly positive-definite almost-everywhere in Ω .

The body is subjected to applied body forces with density f ∈ L2(Ω) in its interior and to applied surface forces of density
F ∈ L2(Γ1) on the portion Γ1 of its boundary. The body is subjected to a homogeneous boundary condition of place along Γ0.

The corresponding displacement–traction problem, or the pure displacement problem if Γ0 = Γ , of three-dimensional linearized
elasticity classically takes the form of the following minimization problem, where the minimizer v : Ω → R

3 is the unknown
displacement field. That this minimization problem has one and only one solution is well known (see, e.g., Theorem 3.4 in
Duvaut and Lions [6]).

Theorem 3.1 (The classical displacement formulation). Let the space V be defined as in Theorem 2.2. Then there exists a unique vector
field v ∈ V that satisfies

J (v) = inf
v∈V

J (v), where J (v) := 1

2

∫
Ω

A∇s v : ∇s v dx − L(v) for all v ∈ V ,

and

L(v) :=
∫
Ω

f · v dx +
∫
Γ1

F · v dΓ for all v ∈ H 1(Ω).

It is then also classical (Brezzi and Fortin [3]) that the stress tensor field σ := A∇s v ∈ L
2(Ω) inside the body can be also

obtained as the solution of the following minimization problem.
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Theorem 3.2 (The classical stress formulation). Let the space V be defined as in Theorem 2.2. Then there exists a unique tensor field

σ ∈ S := {
σ ∈ H(div;Ω); divσ + f = 0 in L2(Ω), 〈σν − F , tr v〉Γ = 0 for all v ∈ V

}
,

that satisfies

g(σ ) = inf
σ∈S

g(σ ), where g(σ ) := 1

2

∫
Ω

Bσ : σ dx for all σ ∈ L
2(Ω).

Besides, σ = A∇s v in L
2(Ω), where the vector field v ∈ V is the unique solution to the minimization problem of Theorem 3.1.

An intrinsic approach to the same displacement–traction problem consists in considering the linearized strain tensor field
e := ∇s v ∈ L

2(Ω) inside the body as the primary unknown, instead of the displacement field itself. One way to define such
an approach is by means of Theorem 2.2, which leads to the following result (see Amrouche et al. [1] and Ciarlet et al. [4]).

Theorem 3.3 (The strain formulation, a.k.a. the intrinsic approach). Let the space M be defined as in Theorem 2.2. Define the Hilbert
space

M
⊥ :=

{
e ∈ L

2(Ω);
∫
Ω

e : μdx = 0 for all μ ∈ M

}
,

and, for each e ∈ M
⊥ , let F(e) denote the unique element in the space V that satisfies ∇sF(e) = e (Theorem 2.2). Then the mini-

mization problem: Find e ∈ M
⊥ such that

j(e) = inf
e∈M⊥

j(e), where j(e) := 1

2

∫
Ω

Ae : e dx − L
(
F(e)

)
,

has one and only one solution e. Besides, e = ∇s v , where the vector field v ∈ V is the unique solution to the minimization problem of
Theorem 3.1.

4. The classical stress formulation of the displacement–traction problem as a point of departure

The minimization problem found in Theorem 3.2 constitutes our point of departure for constructing dual problems, by
means of the approach described in Section 1. Accordingly, our first task consists in verifying that this formulation can be
indeed recast in the abstract framework of Theorem 1.2.

Theorem 4.1. Let the space V and the linear form L ∈ V ∗ be defined as in Theorem 3.1, let the mapping Λ : σ ∈ L
2(Ω) → Λσ ∈ V ∗

be defined by

V ∗ 〈Λσ , v〉V :=
∫
Ω

σ : ∇s v dx for all v ∈ V ,

and finally, let the functions g : L
2(Ω) → R and h : V ∗ → R ∪ {+∞} be respectively defined by

σ ∈ L
2(Ω) → g(σ ) := 1

2

∫
Ω

Bσ : σ dx,

v∗ ∈ V ∗ → h
(

v∗) := 0 if v∗ = L or h
(

v∗) := +∞ if v∗ 	= L.

Then Λ ∈ L(L2(Ω); V ∗) and the functions g and h are both proper, convex, and lower semi-continuous. Define the function G :
L

2(Ω) → R ∪ {+∞} by

G(σ ) := g(σ ) + h(Λσ ) for all σ ∈ L
2(Ω).

Then

h(Λσ ) = IS(σ ) for all σ ∈ L
2(Ω),

where the set S is defined as in Theorem 3.2, and the minimization problem of Theorem 3.2, viz., infσ∈S g(σ ), is the same as the
minimization problem

inf
σ∈L2(Ω)

G(σ ). (P )
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Sketch of proof. It is easily seen that the mapping Λ : σ ∈ L
2(Ω) → Λσ ∈ V ∗ is linear and continuous. The function

g : L
2(Ω) → R is convex since the compliance tensor B is uniformly positive-definite almost-everywhere in Ω , and lower

semi-continuous since g is continuous for the norm ‖ · ‖L2(Ω) . The function h : V ∗ → R ∪ {+∞} is the indicator function of
the subset {L} of V ∗ . Hence it is proper, convex because {L} is a convex subset of V ∗ , and lower semi-continuous because
{L} is a closed subset of V ∗ . The rest of the proof makes an essential use of the Green formula of Theorem 2.1; for details,
see [5]. �

In view of identifying the dual problems of the minimization problem (P ) of Theorem 4.1, it remains to identify the
Legendre–Fenchel transforms (Section 1) of the functions h and g introduced in this theorem. The next result is known
(see, e.g., [7]).

Theorem 4.2. The Legendre–Fenchel transforms g∗ : L
2(Ω) → R and h∗ : V → R of the functions g : L

2(Ω) → R and h : V ∗ →
R ∪ {+∞} defined in Theorem 4.1 are respectively given by

g∗(e) := 1

2

∫
Ω

Ae : e dx for all e ∈ L
2(Ω) and h∗(v) :=

∫
Ω

f · v dx +
∫
Ω

F · v dΓ = L(v) for all v ∈ V .

5. A first dual problem to the stress formulation

Following the approach described in Section 1, we now identify the first dual formulation (P ∗) to the stress formulation
of the displacement–traction problem, formulated for this purpose in the form of the equivalent minimization problem (P )

described in Theorem 4.1; for the proof, see [5].

Theorem 5.1. Consider the minimization problem (P ) of Theorem 4.1, viz., infσ∈L2(Ω) G(σ ). Let

G∗(e) := inf
σ∈L2(Ω)

{∫
Ω

e : σ dx + h(Λσ )

}
− g∗(e) for each e ∈ L

2(Ω),

where g∗ : L
2(Ω) → R is the Legendre–Fenchel transform of the function g, and let

sup
e∈L2(Ω)

G∗(e), (P ∗)

be the corresponding dual problem. Let the space M
⊥ and the functional j : M

⊥ → R be defined as in Theorem 3.3. Then the dual
problem (P ∗) can be also written as

sup
e∈L2(Ω)

G∗(e) = − inf
e∈M⊥

j(e).

Besides,

G(σ ) = inf
σ∈L2(Ω)

G(σ ) = sup
e∈L2(Ω)

G∗(e) = G∗(e),

where σ ∈ S ⊂ L
2(Ω) and e ∈ M

⊥ ⊂ L
2(Ω) are the solutions of the minimization problems of Theorems 3.2 and 3.3.

Define the Lagrangian L : L
2(Ω) × L

2(Ω) → R ∪ {+∞} by

L(σ , e) :=
∫
Ω

e : σ dx − g∗(e) + h(Λσ ) for all (σ , e) ∈ L
2(Ω) × L

2(Ω).

Then

inf
σ∈L2(Ω)

sup
e∈L2(Ω)

L(σ , e) = L(σ , e) = sup
e∈L2(Ω)

inf
σ∈L2(Ω)

L(σ , e).

Theorem 5.1 thus shows that the dual problem (P ∗) of the stress formulation of the displacement–traction problem of linearized
elasticity (Theorem 3.2) is, up to a change of sign, the strain formulation of the same problem (Theorem 3.3).
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6. A second dual problem to the stress formulation

We now identify the second dual formulation (P̃ ∗) to the stress formulation of the displacement problem, again formulated
as the problem (P ) of Theorem 4.1; for the proof, see [5].

Theorem 6.1. Consider the minimization problem (P ) of Theorem 4.1, viz., infσ∈L2(Ω) G(σ ). Let

G̃∗(v) := inf
σ∈L2(Ω)

{
1

2

∫
Ω

Bσ : σ dx + V ∗ 〈Λσ , v〉V

}
− h∗(v) for each v ∈ V ,

where h∗ : V → R is the Legendre–Fenchel transform of the function h, and let

sup
v∈V

G̃∗(v) (P̃ ∗)

be the corresponding dual problem. Let the functional J : V → R be defined as in Theorem 3.1. Then the dual problem (P̃ ∗) can be
also written as

sup
v∈V

G̃∗(v) = − inf
v∈V

J (v).

Besides,

G(σ ) = inf
σ∈L2(Ω)

G(σ ) = sup
v∈V

G̃∗(v) = G∗(−v),

where σ ∈ S ⊂ L
2(Ω) and v ∈ V are the solutions of the minimization problems of Theorems 3.2 and 3.1.

Define the Lagrangian L̃ : L
2(Ω) × V → R by

L̃(σ , v) := 1

2

∫
Ω

Bσ : σ dx + V ∗ 〈Λσ , v〉V − h∗(v) for all (σ , v) ∈ L
2(Ω) × V .

Then

inf
σ∈L2(Ω)

sup
v∈V

L̃(σ , v) = L̃(σ , v) = sup
v∈V

inf
σ∈L2(Ω)

L̃(σ , v).

Theorem 6.1 thus shows that the dual problem (P̃ ∗) to the stress formulation of the displacement–traction problem of linearized
elasticity (Theorem 3.2) is, up to a change of sign, the displacement formulation of the same problem (Theorem 3.1).

7. Concluding remarks

The strain formulation of, a.k.a. the intrinsic approach to, the displacement–traction problem described in Theorem 3.3
was derived a priori, in [1] or [4], as a way to re-formulate this problem as a quadratic minimization problem with the
strain tensor field as the sole unknown. One main conclusion to be drawn from the present analysis is thus that this
strain formulation may be also viewed as a Legendre–Fenchel dual problem to the classical stress formulation (Theorem 5.1). This
constitutes the main novelty of this Note.

Another novelty is that the classical displacement formulation can be also viewed as a Legendre–Fenchel dual problem to the
same classical stress formulation (Theorem 6.1).
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