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It is shown that the Dirac measure δ( f ) = f (1) defined on the Banach space C([0,1])
of complex valued continuous functions defined on the interval [0,1], has an absolutely
continuous restriction to an infinite dimensional subspace R of C([0,1]), that is

f (1) =
1∫

0

l(x) f (x)dx, ∀ f ∈ R.

Each non-trivial zero of the Riemann zeta function determines a different Radon–Nikodym
density l ∈ L1([0,1]). The Riemann Hypothesis holds if and only if none of these densities
belongs to L2([0,1]) or if and only if R is dense in L2([0,1]).

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous montrons que la mesure de Dirac δ( f ) = f (1) définie sur l’espace de Banach C([0,1])
de fonctions continues à valeurs complexes définies sur l’intervalle [0,1], possède une
restriction absolument continue sur un sous-espace de dimension infinie R de C([0,1]),
c’est-à-dire

f (1) =
1∫

0

l(x) f (x)dx, ∀ f ∈ R.

Chaque zéro non trivial de la fonction zêta de Riemann détermine une densité de Radon–
Nikodym différente l ∈ L1([0,1]). L’hypothèse de Riemann est vérifiée si et seulement si
aucune de ces densités appartient à L2([0,1]), ou si et seulement si R est dense dans
l’espace L2([0,1]).
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One of the first infinite dimensional Banach spaces to be studied was C([0,1]) equipped with the norm

‖ f ‖ = max
x∈[0,1]

∣∣F (x)
∣∣.

F. Riesz determined the dual C([0,1])′ of C([0,1]), proving that if ϕ ∈ C([0,1])′ then ϕ( f ) = ∫ 1
0 f (x)dg(x), where g :

[0,1] → C is a function of bounded variation, that is g = g1 − g2 + i(g3 − g4), where gi , 1 � i � 4, are non-decreasing and
the integral is in the sense of Riemann–Stieltjes [6]. It is known that if g : [0,1] → R is non-decreasing then there is a
unique decomposition g = gs + gd + gac , where each term of the right-hand side is non-decreasing, gs is continuous and
singular in the sense that g′

s(x) = 0 a.e., gd is constant except for jump discontinuities and gac is absolutely continuous [6].
One can recover gs and gd from their distributional derivatives but not from their ordinary derivatives. For gac the ordinary
and distributional derivatives coincide. The terms gd and gac admit a physical and probabilistic interpretation. Until now
no use has been found for the term gs . For the rest of this note we need the following reformulation of the Riemann
Hypothesis (R.H.) [1,2], expressed in terms of the integral Hilbert–Schmidt, non-nuclear, non-normal operator defined on
L2([0,1]) by

[A f ](θ) =
1∫

0

ρ

(
θ

x

)
f (x)dx

(A also makes sense on L1([0,1])) where ρ is the fractional part function given by ρ(x) = x − [x], x ∈ R, [x] ∈ Z, [x] � x <

[x] + 1, and whose Hilbert space adjoint A∗ , by Fubini’s theorem, takes the form

[
A∗g

]
(x) =

1∫
0

ρ

(
θ

x

)
g(θ)dθ.

Theorem 1. R.H. holds if and only if ker A = {0} or if and only if h /∈ R(A), where h(x) = x.

By duality the condition ker A = {0} is equivalent to the statement that R = R(A∗) is dense in L2([0,1]).
Several properties of the operator A are studied in [1,2]. Our main claim, as stated in the abstract, will be proven showing

that R ⊂ C([0,1]), where A∗ is the Hilbert space adjoint of A, and that

f (1) =
1∫

0

f (x)l(x)dx, ∀ f ∈ R (1)

where l ∈ L1([0,1]) obeys the equation Al = h.
First we note that if s = σ + it , σ > −1, t ∈ R, then [1,4]

Ahs = h

s
− ζ(s + 1)

s + 1
hs+1 (2)

and therefore A(shs) = h if ζ(s + 1) = 0. If moreover ζ ′(s + 1) = 0 then A(−s2hs log h) = h.
By the theorem, R.H. holds if and only if there is not l ∈ L2([0,1]) such that Al = h; also ker A = {0} if and only if R is

dense in L2([0,1]). By (2) ker A∗ = {0}, since h is a cyclic vector for A by the Müntz theorem [5], and therefore R is infinite
dimensional. Before proving that R ⊂ C([0,1]) we show that (1) is a simple consequence of Fubini’s theorem. Let us assume
that Al = h, where l ∈ L1([0,1]) and f = A∗ϕ , where ϕ ∈ L2([0,1]). Then by Fubini’s theorem we have

1∫
0

1∫
0

ϕ(θ)ρ

(
θ

x

)
l(x)dx dθ =

1∫
0

ϕ(θ)θ dθ = f (1) =
1∫

0

f (x)l(x)dx. (3)

We show next that R ⊂ C([0,1]). From the formula

ρ

(
θ

x

)
= θ

x
−

∞∑
n=1

nχ] θ
n+1 , θ

n ](x), x ∈ ]0,1], θ ∈ [0,1],

where χC is the characteristic function of the set C , one gets [1]

[
A∗ϕ

]
(x) = 1

x

1∫
θϕ(θ)dθ −

∞∑
k=1

{[
k∑

n=1

1∫
ϕ(θ)dθ

]
χ] 1

k+1 , 1
k ](x)

}
.

0 nx
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Therefore A∗ϕ is continuous when restricted to ]0,1]. The continuity of A∗ϕ at 0 follows from a theorem of Fejér [7, vol. I,
p. 49, T. 4.15] which implies that

lim
x→0+

1∫
0

ρ

(
θ

x

)
ϕ(θ)dθ = 1

2

1∫
0

ϕ(θ)dθ.

Therefore A∗ϕ ∈ C([0,1]) ∀ϕ ∈ L2([0,1]) (the same result holds for ϕ ∈ L1([0,1])). In concrete terms, we have proven the
following theorem:

Theorem 2. There exists an infinite dimensional subspace R of C([0,1]), such that for each non-trivial zero s + 1 of the Riemann zeta
function, there holds

f (1) =
1∫

0

sxs f (x)dx, ∀ f ∈ R.

Moreover, R is dense in L2([0,1]) if and only if R.H . holds.

It is not difficult to show that if l ∈ L1([0,1]) is such that

1∫
0

ψ(x)l(x)dx = ψ(1), ∀ψ ∈ R
(

A∗)

then Aρ l = h. But there are ψ ∈ C([0,1]) \ R(A∗) for which the last equation holds true, for instance we can take ψ = A∗ f
where f ∈ L1([0,1]) \ L2([0,1]). One can give explicitly a set of elements in R(A∗) that generate a dense subspace of R(A∗);
if 0 � α < β � 1, then using the Fourier series for the Bernoulli polynomials B1(x) and B2(x) [3, T. 12.19] we get

1∫
0

ρ

(
θ

x

)
χ[α,β](θ)dθ = 1

2
(β − α) + x

2

{
ρ

(
β

x

)
− ρ

(
α

x

)}{
ρ

(
β

x

)
+ ρ

(
α

x

)
− 1

}
.

To show that R(A∗) = L2([0,1]) it is enough to prove that the characteristic function of a single interval is in R(A∗) [4].
Finally, using the polynomials of Bernstein and an explicit formula given in [1,2] for (λ + A)−1h one can show that

lim
λ→0+

〈
f , (λ + A)−1h

〉 = f (1), ∀ f ∈ C
([0,1]). (4)

Using (4) and an expansion in Legendre polynomials for (λ + A)−1h it can be proven that

lim
λ→0+

∥∥(λ + A)−1h
∥∥ = ∞.
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