EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebraic Geometry

Classification of upper motives of algebraic groups of inner type A_n

Classification des motifs supérieurs des groupes algébriques intérieurs de type A_n

Charles De Clercq

Université Pierre-et-Marie-Curie (Paris 6), équipe topologie et géométrie algébriques, 4, place Jussieu, 75252 Paris cedex 05, France

ARTICLE INFO

Article history: Received 24 January 2011 Accepted after revision 28 February 2011

Presented by the Editorial Board

ABSTRACT

Let A, A' be two central simple algebras over a field F and \mathbb{F} be a finite field of characteristic p. We prove that the upper indecomposable direct summands of the motives of two anisotropic varieties of flags of right ideals $X(d_1,\ldots,d_k;A)$ and $X(d'_1,\ldots,d'_{k'};A')$ with coefficients in \mathbb{F} are isomorphic if and only if the p-adic valuations of $\gcd(d_1,\ldots,d_k)$ and $\gcd(d'_1,\ldots,d'_{k'})$ are equal and the classes of the p-primary components A_p and A'_p of A and A' generate the same group in the Brauer group of F. This result leads to a surprising dichotomy between upper motives of absolutely simple adjoint algebraic groups of inner type A_p .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soient A, A' deux algèbres centrales simples sur un corps F et \mathbb{F} un corps fini de caractéristique p. Nous prouvons que les facteurs directs indécomposables supérieurs des motifs de deux variétés anisotropes de drapeaux d'idéaux à droite $X(d_1,\ldots,d_k;A)$ et $X(d_1',\ldots,d_k';A')$ à coefficients dans \mathbb{F} sont isomorphes si et seulement si les valuations p-adiques de $\operatorname{pgcd}(d_1,\ldots,d_k)$ et $\operatorname{pgcd}(d_1',\ldots,d_{k'}')$ sont égales et les classes des composantes p-primaires A_p et A'_p de A et A' engendrent le même sous-groupe dans le groupe de Brauer de F. Ce résultat mène à une surprenante dichotomie entre les motifs supérieurs des groupes algébriques absolument simples, adjoints et intérieurs de type A_p .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout this Note p will be a prime and \mathbb{F} will be a finite field of characteristic p. Let F be a field and $CM(F; \mathbb{F})$ be the category of Grothendieck–Chow motives with coefficients in \mathbb{F} . Motivic properties of projective homogeneous F-varieties and their relations with classical discrete invariants have been intensively studied recently (see, for example, [7,11–15]). In this article we deal with the particular case of projective homogeneous F-varieties under the action of an absolutely simple affine adjoint algebraic group of inner type A_n . More precisely, we prove the following result:

Theorem 1. Let A and A' be two central simple F-algebras. The upper indecomposable direct summands of the motives of two anisotropic varieties of flags of right ideals $X(d_1, \ldots, d_k; A)$ and $X(d'_1, \ldots, d'_{k'}; A')$ in $CM(F; \mathbb{F})$ are isomorphic if and only if $v_p(\gcd(d_1, \ldots, d_k)) = v_p(\gcd(d'_1, \ldots, d'_{k'}))$ and the p-primary components A_p and A'_p of A and A' generate the same subgroup of Br(F).

E-mail address: de.clercq.charles@gmail.com.

In Section 2 we recall classical discrete invariants and varieties associated to central simple F-algebras, while Section 3 is devoted to the theory of upper motives. Finally we prove Theorem 1 in Section 4, using an index reduction formula due to Merkurjev, Panin and Wadsworth and the theory of upper motives. Theorem 1 gives a purely algebraic criterion to compare upper direct summands of varieties of flags of ideals, and leads to a quite unexpected dichotomy between upper motives of absolutely simple adjoint algebraic groups of inner type A_n .

2. Generalities on central simple algebras

Our reference for classical notions on central simple F-algebras is [9]. A finite-dimensional F-algebra A is a central simple F-algebra if its center Z(A) is equal to F and if A has no non-trivial two-sided ideals. The square root of the F-dimension of A is the degree of A, denoted by $\deg(A)$. Two central simple F-algebras A and B are Brauer-equivalent if $M_n(A)$ and $M_m(B)$ are isomorphic for some integers n and m, and the Schur index $\operatorname{ind}(A)$ of a central simple F-algebra A is the degree of the (uniquely determined up to isomorphism) central division F-algebra Brauer-equivalent to A. The tensor product endows the set $\operatorname{Br}(F)$ of equivalence classes of central simple F-algebras under the Brauer equivalence with a structure of a torsion abelian group. The exponent of A, denoted by $\exp(A)$, is the order of the class of A in $\operatorname{Br}(F)$ and divides $\operatorname{ind}(A)$.

Let A be a central simple F-algebra and $0 \le d_1 < \cdots < d_k \le \deg(A)$ be a sequence of integers. A convenient way to define the variety of flags of right ideals of reduced dimension d_1, \ldots, d_k in A is to use the language of functor of points. For any commutative F-algebra R, the set of R-points $\operatorname{Mor}_F(\operatorname{Spec}(R), X(d_1, \ldots, d_k; A))$ consists of the sequences (I_1, \ldots, I_k) of right ideals of the Azumaya R-algebra $A \otimes_F R$ such that $I_1 \subset \cdots \subset I_k$, the injection of A_R modules $I_S \to A_R$ splits and the rank of the R-module I_S is equal to $d_S \cdot \deg(A)$ for any $1 \le s \le k$. For any morphism $R \to S$ of F-algebras the corresponding map from R-points to S-points is given by $(I_1, \ldots, I_k) \mapsto (I_1 \otimes_R S, \ldots, I_k \otimes_R S)$. Two important particular cases of varieties of flags of right ideals are the classical Severi–Brauer variety X(1; A), and the generalized Severi–Brauer varieties X(i; A).

If G is an algebraic group and X a projective G-homogeneous F-variety, we say that X is *isotropic* if X has a zero-cycle of degree coprime to p, and X is *anisotropic* if X is not isotropic. If $X = X(d_1, \ldots, d_k; A)$ is a variety of flags of right ideals, X is isotropic if and only if $v_p(\gcd(d_1, \ldots, d_k)) \geqslant v_p(\operatorname{ind}(A))$. Note that if the Schur index of A is a power of p, X is isotropic if and only if X has a rational point.

3. The theory of upper motives

Our basic references for the definitions and the main properties of Chow groups with coefficients and the category $CM(F;\Lambda)$ of Grothendieck–Chow motives with coefficients in a commutative ring Λ are [2] and [5]. In the sequel G will be a semisimple affine adjoint algebraic group of inner type, G0 will be a projective G1-homogeneous G2-homogeneous G3-homogeneous G4 will be assumed to be a finite and connected ring. By [3] (see also [8]) the motive of G3-homogeneous G4-homogeneous G5-homogeneous G5-homogeneous G6-homogeneous G6-homogeneous G8-homogeneous G8-homogeneous G8-homogeneous G8-homogeneous G9-homogeneous G9-homogen

Upper motives are essential: any indecomposable direct summand in the complete motivic decomposition of X is the upper motive of another projective G-homogeneous F-variety by [8, Theorem 3.5]. This structural result implies that the study of the motivic decomposition of a projective G-homogeneous F-variety X is reduced to the case $A = \mathbb{F}_p$. Indeed by [16, Corollary 2.6] the complete motivic decomposition of X with coefficients in A remains the same when passing to the residue field of A, and is also the same as if the ring of coefficients is \mathbb{F}_p by [4, Theorem 2.1], where p is the characteristic of the residue field of A. These results motivate the study of the set \mathfrak{X}_G of upper p-motives of the algebraic group G, which consists of the isomorphism classes of upper motives of projective G-homogeneous F-varieties in $CM(F;\mathbb{F}_p)$. Furthermore the dimension of the upper motive of X in $CM(F;\mathbb{F}_p)$ is equal to the canonical p-dimension of X by [6, Theorem 5.1], hence upper motives encode important information on the underlying varieties. Upper motives also have good properties: the upper motives of two projective G-homogeneous F-varieties X and X' in $CM(F;\mathbb{F})$ are isomorphic if and only if both $X_{F(X')}$ and $X'_{F(X)}$ are isotropic by [8, Corollary 2.15]. The variety X is isotropic if and only if the upper motive of X is isomorphic to the T-ate motive (that is to say the motive of S-pec(F)) and this is why we focus in this Note on the case of anisotropic varieties of flags of right ideals.

If G is absolutely simple adjoint of inner type A_n , G is isomorphic to $PGL_1(A)$, where A is a central simple F-algebra of degree n+1. Any projective G-homogeneous F-variety is then isomorphic to a variety $X(d_1, \ldots, d_k; A)$ of flags of right ideals in A (see [10]) thus Theorem 1 classifies upper motives of absolutely simple affine adjoint algebraic groups of inner type A_n . In the particular case of classical Severi–Brauer varieties Theorem 1 corresponds to [1, Theorem 9.3], since for any field extension E/F a central simple F-algebra becomes split over E if and only if the Severi–Brauer variety $X(1; A_E)$ has a rational point.

4. Main results

Let D be a central division F-algebra of degree p^n . For any $0 \le k \le n$, $M_{k,D}$ will denote the upper indecomposable direct summand of $X(p^k; D)$ in CM(F; \mathbb{F}). If D' is another central division F-algebra of degree p^n and j satisfies $1 \le j \le p^n$, we

denote the integer $\frac{p^k}{\gcd(j,p^k)} \cdot \operatorname{ind}(D \otimes D'^{-j})$ by $\mu_{k,j}^{D,D'}$. In the sequel, the following index reduction formula (see [10, p. 565]) will be of constant use:

$$\operatorname{ind}(D_{F(X(p^k;D'))}) = \gcd_{1 \leqslant j \leqslant p^n} \mu_{k,j}^{D,D'} = \min_{1 \leqslant j \leqslant p^n} \mu_{k,j}^{D,D'}$$

Proposition 2. Let D and D' be two central division F-algebras of degree p^n . Assume that $\exp(D) \ge \exp(D')$ and that $X(p^k; D)_{F(X(p^k; D'))}$ is isotropic for some integer $0 \le k < n$. If $\operatorname{ind}(D_{F(X(k; D'))}) = \mu_{k, j_0}^{D, D'}$, j_0 is coprime to p.

Proof. Suppose that p divides j_0 and $\operatorname{ind}(D_{F(X(k;D'))}) = \mu_{k,j_0}^{D,D'}$. By assumption $X(k;D)_{F(X(k;D'))}$ has a rational point, hence the integer $\mu_{k,j_0}^{D,D'}$ divides p^k by [9, Proposition 1.17] and $\operatorname{ind}(D\otimes D'^{-j_0}) \mid \gcd(j_0,p^k)$. Since p divides j_0 , $\exp(D'^{-j_0}) < \exp(D')$, therefore $\exp(D'^{-j_0}) < \exp(D)$ and $\exp(D) = \exp(D\otimes D'^{-j_0})$. It follows that $\exp(D)$ divides j_0 , thus $\exp(D')$ also divides j_0 . The central simple F-algebra D'^{j_0} is therefore split and $D\otimes D'^{-j_0}$ is Brauer-equivalent to D so that $\operatorname{ind}(D)$ divides p^k , a contradiction. \square

Theorem 3. Let \mathbb{F} be a finite field of characteristic p and p, p' be two central division p-algebras of degree p^n . The following assertions are equivalent:

- (1) for some integer $0 \le k < n$, $M_{k,D}$ and $M_{k,D'}$ are isomorphic in CM($F; \mathbb{F}$);
- (2) the classes of D and D' generate the same subgroup of Br(F);
- (3) for any $0 \le k < n$, $M_{k,D}$ is isomorphic to $M_{k,D'}$ in $CM(F; \mathbb{F})$.

Proof. We first show that $(1) \Rightarrow (2)$. We may exchange D by D' and thus assume that $\exp(D)$ is greater than $\exp(D')$. Since $M_{k,D}$ is isomorphic to $M_{k,D'}$, there is an integer j_0 coprime to p such that the Schur index of $D \otimes D'^{-j_0}$ is equal to 1 by [9, Proposition 1.17] and Proposition 2, hence $D \otimes D'^{-j_0}$ is split and the class of D is equal to the class of D'^{j_0} in $\operatorname{Br}(F)$. Furthermore since j_0 is coprime to p the class of D in $\operatorname{Br}(F)$ is also a generator of the subgroup of $\operatorname{Br}(F)$ generated by [D']. Now we show that $(2) \Rightarrow (3)$: if [D] and [D'] generate the same group in $\operatorname{Br}(F)$, $\operatorname{ind}(D_E) = \operatorname{ind}(D'_E)$ for any field extension E/F. Given an integer $0 \leqslant k < n$, since $X(p^k; D)$ has a rational point over $F(X(p^k; D))$, $\operatorname{ind}(D'_{F(X(p^k; D))}) = \operatorname{ind}(D_{F(X(p^k; D))})$ divides p^k . The variety $X(p^k; D')$ then also has a rational point over $F(X(p^k; D))$ by [9, Proposition 1.17]. The same procedure replacing D by D' shows that $X(p^k; D)$ has a rational point over $F(X(p^k; D'))$, hence $M_{k,D}$ is isomorphic to $M_{k,D'}$.

Finally $(3) \Rightarrow (1)$ is obvious. \Box

Corollary 4. Let D and D' be two central division F-algebras of degree p^n and $p^{n'}$. The upper summands $M_{k,D}$ and $M_{k',D'}$ are isomorphic for some integers $0 \le k < n$ and $0 \le k' < n'$ if and only if k = k' and the classes of D and D' generate the same subgroup of Br(F).

Proof. Since by [8, Theorem 4.1] the generalized Severi–Brauer varieties $X(p^k; D)$ and $X(p^{k'}; D')$ are p-incompressible, if $M_{k,D}$ and $M_{k',D'}$ are isomorphic, the dimension of $X(p^k; D)$ (which is $p^k(p^n - p^k)$) is equal to the dimension of $X(p^{k'}; D')$. The equality $p^k(p^n - p^k) = p^{k'}(p^{n'} - p^{k'})$ implies that k = k', n = n' and it remains to apply Theorem 3. The converse is clear by Theorem 3. \square

Proof of Theorem 1. Set $X = X(d_1, \ldots, d_k; A)$, $X' = X(d_1, \ldots, d_{k'}; A')$, and also $v = v_p(\gcd(d_1, \ldots, d_k))$ and $v' = v_p(\gcd(d'_1, \ldots, d'_{k'}))$. If D and D' are two central division F-algebras Brauer-equivalent to A_p and A'_p , the upper indecomposable direct summand of X (resp. of X') is isomorphic to $M_{v,D}$ (resp. to $M_{v',D'}$) by [8, Theorem 3.8]. By Corollary 4 these summands are isomorphic if and only if v = v' (since X and X' are anisotropic) and the classes of A_p and A'_p generate the same subgroup of Br(F). \square

Theorem 5. Let G and G' be two absolutely simple affine adjoint algebraic groups of inner type A_n and $A_{n'}$. Then either $\mathfrak{X}_G \cap \mathfrak{X}_{G'}$ is reduced to the class of the Tate motive or $\mathfrak{X}_G = \mathfrak{X}_{G'}$.

Proof. If $\mathfrak{X}_{PGL_1(A)} \cap \mathfrak{X}_{PGL_1(A')}$ is not reduced to the class of the Tate motive, there are two anisotropic varieties of flags of right ideals $X = X(d_1, \ldots, d_k; A)$ and $X' = X(d'_1, \ldots, d'_{k'}; A')$ whose upper motives are isomorphic. By Theorem 1 this implies that the upper p-motive of any anisotropic $PGL_1(A)$ -homogeneous F-variety $X(d_1, \ldots, d_{\tilde{k}}; A)$ is isomorphic to, say, the upper p-motive of $X(d_1, \ldots, d_{\tilde{k}}; A')$. \square

Acknowledgement

I would like to express my gratitude to N. Karpenko, for introducing me to this subject, raising this question and for stimulating discussions on this subject.

References

- [1] S.A. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math. 62 (1955) 8-43.
- [2] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, vol. 17, Société Mathématique de France, 2004.
- [3] V. Chernousov, A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Transform. Groups 11 (2006) 371–386.
- [4] C. De Clercq, Motivic decompositions of projective homogeneous varieties and change of coefficients, C. R. Acad. Sci. Paris, Ser. I 348 (17–18) (2010) 955–958.
- [5] R. Elman, N. Karpenko, A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society, Providence, 2008.
- [6] N. Karpenko, Canonical dimension, in: Proceedings of the ICM 2010, vol. II, pp. 146-161.
- [7] N. Karpenko, On the first Witt index of quadratic forms, Invent. Math. 153 (2) (2003) 455-462.
- [8] N. Karpenko, Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties, Linear Algebraic Groups and Related Structures (preprint server) 333, 2009.
- [9] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, AMS Colloquium Publications, vol. 44, American Mathematical Society, 1998.
- [10] A. Merkurjev, A. Panin, A. Wadsworth, Index reduction formulas for twisted flag varieties, I, J. K-Theory 10 (1996) 517-596.
- [11] V. Petrov, N. Semenov, Higher Tits indices of algebraic groups, preprint, 2007.
- [12] V. Petrov, N. Semenov, K. Zainoulline, J-invariant of linear algebraic groups, Ann. Sci. École Norm. Sup. 41 (2008) 1023-1053.
- [13] A. Vishik, Motives of quadrics with applications to the theory of quadratic forms, in: Proceedings of the Summer School "Geometric Methods in the Algebraic Theory of Quadratic Forms, Lens, 2000", in: Lect. Notes in Math., vol. 1835, 2004, pp. 25–101.
- [14] A. Vishik, Excellent connections in the motives of quadrics, Annales Scientifiques de L'ENS, 2010, in press.
- [15] A. Vishik, Fields of u-invariant 2^r + 1, in: Algebra, Arithmetic and Geometry In Honor of Yu.I. Manin, Birkhäuser, 2010, pp. 661-685.
- [16] A. Vishik, N. Yagita, Algebraic cobordism of a Pfister quadric, J. Lond. Math. Soc. (2) 76 (3) (2007) 586-604.