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The following random process on Z
4 is studied. At first visit to a site, the two first

coordinates perform a (2-dimensional) simple random walk step. At further visits, it is
the last two coordinates which perform a simple random walk step. We prove that this
process is almost surely transient. The lower dimensional versions are discussed and
various generalizations and related questions are proposed.
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r é s u m é

Nous étudions le processus suivant sur Z
4. À la première visite en un site, les deux

premières coordonnées effectuent un saut d’une marche simple (2-dimensionnelle). Aux
visites suivantes en ce site, ce sont les deux dernières coordonnées qui effectuent un
saut de marche simple. Nous montrons que ce processus est presque sûrement transitoire.
Nous discutons également des dimensions inférieures et divers généralisations et questions
connexes sont proposées.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The excited random walk as defined by Benjamini and Wilson [2] has a bias in some fixed direction, a feature which is
highly useful in its analysis. See e.g. [10] and references within. Attempts to relax the dependence of the proof structure
on monotonicity resulted in a number of works where the walker has competing drifts. See [1,6,4]. One motivation was
to get closer to standard models of reinforced random walks on Z

d , which are symmetric in nature. We think for instance
on the question of recurrence vs. transience of 1-reinforced random walks, which is still widely open (see the surveys [11]
and [12]). With the same goal in mind, we started exploring excited-like models where the walker is in addition also a
martingale or a bounded perturbation of one, and posed some questions in 2007 [7], which, it seems, are all still open.
Progress on this kind of models was achieved in [5], but there the laws were not nearest-neighbors. Here we describe and
solve one such model of a nearest-neighbor walk in 4 dimensions.

We describe a general form of the model in any dimension d � 2, but we will actually only deal with 4 dimensions here.
So one has first to choose arbitrarily two integers d1 � 1 and d2 � 1 such that d = d1 + d2. Then we define the process
(Sn,n � 0) on Z

d as a mixture of two simple random walks in the following sense. Set Sn = (Xn, Yn), where Xn ∈ Z
d1 is the

set of the first d1 coordinates of Sn and Yn ∈ Z
d2 is the set of the last d2 coordinates. Now the rule is the following. First

S0 = 0. Next if S visits a site for the first time then only the X component performs a simple random walk step, that is:
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P
[

Sn+1 − Sn = (0, . . . ,0,±1,0, . . . ,0) | Fn
] =

{
1/(2d1) Sn �= Si ∀i < n,

0 otherwise,

where the ±1 can be at any of the first d1 coordinates. Otherwise, only Y performs a simple random walk step:

P
[

Sn+1 − Sn = (0, . . . ,0,±1,0, . . . ,0) | Fn
] =

{
1/(2d2) ∃i < n Si = Sn,

0 otherwise,

where this time the ±1 can be at any of the last d2 coordinates. We call this process S the M(d1,d2)-random walk.
Here we say that a process is transient if almost surely any site is visited only finitely many times. It is said to be

recurrent if almost surely it visits all sites infinitely often. We will prove the following:

Theorem 1. The M(2,2)-random walk is transient.

The proof of Theorem 1 is elementary, and uses only basic estimates on the standard 2-dimensional simple random walk.
It relies on finding good upper bounds for the probability of return to the origin and then uses the Borel–Cantelli Lemma
(what makes however the proof nontrivial is that the two components X and Y are not independent).

Note that the canonical projections of S on Z
d1 and Z

d2 are usual (time changed) simple random walks. So if d = 4, and
if d1 or d2 equals 3, then S is automatically transient, since the simple random walk on Z

3 is transient. Likewise if d is
larger than 5, then for any choice of d1 and d2, the resulting process will be transient. Thus the question of recurrence vs.
transience is only interesting in dimension less than or equal to 4. In dimension 3 there are two versions: d1 = 1 and d2 = 2
or d1 = 2 and d2 = 1. We conjecture that in both cases S will be transient, also because it is a 3-dimensional process.
Proving this seems nontrivial, but notice that a possible intermediate step between the dimension 3 and 4 could be to
consider the analogue problem on the discrete 3-dimensional Heisenberg group, which is generated by 2 elements (and
their inverses), yet balls of radius r have size order r4.

Let us make some comments now on the 2-dimensional case. As a 2-dimensional process, we believe that M(1,1) is
recurrent. Observe however that this is not true when starting from any configuration of visited sites. Indeed if we start
with a vertical line of visited sites, then the process will be trapped in this line, and if the line does not include the origin,
the process will not return there. It is also not difficult to construct starting environments such that the first coordinate of
the process will tend almost surely toward +∞. For example if the initial configuration is the “trumpet” {(x, y): |y| < ex}
then the walker will drift to infinity in the x direction.1 Of course it is not possible for the random walk to create these
environments in finite time, so it is not an obstacle for recurrence, but it may be interesting to keep this in mind. Another
problem concerns the limiting shape of the range (i.e. the set of visited sites) of the process. Based on heuristics and some
simulations, we believe that it is a vertical interval. This problem is closely related to the question of evaluating the size of
the range Rn at time n. Indeed the horizontal displacement of the process at time n is of order

√
#Rn , whereas its vertical

displacement is always of order
√

n. So another formulation of the problem would be to show that Rn is sublinear. By the
way we mention a related question. Assume that at each step, one can decide, conditionally on the past, to move the first
coordinate or the second coordinate (and then perform a 1-dimensional simple random walk step). Then what is the best
strategy to maximize the range? In particular is it possible for the range to be of size roughly n, or at least significantly
larger than n/ ln n, which is the size of the range of the simple random walk?

A possible generalization of our model would be to consider multi-excited versions, in the spirit of Zerner [13]. In this
case one should first decompose d as d = d1 + · · · + dm , for some m � 2 and di � 1, with i � m. Then at ith visit to a site
only the ith component of S performs a simple random walk step, if i < m, and at further visits only the mth component
moves. In dimension 4 for instance the case d1 = 2 and d2 = d3 = 1 seems interesting and nontrivial. Another interesting
case is d � 3 and di = 1 for each i � d (even the case d very large seems nontrivial).

A related problem which appeared in draft versions of this paper was solved by Y. Peres and P. Sousi (private commu-
nication) who proved, among other things, the following. Let μ1 and μ2 be any two symmetric laws on Z

d , d � 3, and
assume the support of μ1 and μ2 both generate Z

d . Decide that at first visit to a site the jump of the process has law μ1,
and at further visits it has law μ2. Then this process is transient.

2. Proof of the theorem

The theorem is a direct consequence of the following proposition:

Proposition 1. There exists a constant C > 0 such that for any n > 1,

P
[
0 ∈ {Sn, . . . , S2n}

]
� C

(
ln lnn

lnn

)2

.

1 We will not prove any of these claims, as they are somewhat off-topic.
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Indeed assuming this proposition we get∑
k�0

P
[
0 ∈ {S2k , . . . , S2k+1}] < +∞,

and we can conclude by using the Borel–Cantelli Lemma. So all we have to do is to prove this proposition.

Proof of Proposition 1. For any n � 1, denote by rn the cardinality of the range of S at time n. The next lemma will be
needed:

Lemma 1. For any M > 0, there exists a constant C > 0, such that

P
[
n/(C ln n)2 � rn � 99n/100

] = 1 − o
(
n−M)

.

Proof. Note first that for any k, if Sk and Sk+1 were not already visited in the past, then Sk+2 = Sk with probability at
least 1/4. In particular for any k, there is probability at least 1/4 for the event

Ek := {S is not at a fresh site at one of the times k, k + 1 or k + 2},
to occur. In other words, if εk = 1Ek , then E[ε3k | ε0, . . . , ε3(k−1)] � 1/4 for all k. Then a standard use of the Azuma–Hoeffding
inequality gives that

P

[[n/3]∑
k=0

ε3k � n/100

]
= o

(
n−M)

,

which gives the desired upper bound on rn .
We now prove the lower bound. Let c > 0 be fixed. Let (Un,n � 0) be a simple random walk on Z

2. For any n � 1
and x ∈ Z

2, denote by Nn(x) the number of visits of U to x before time n. A simple and standard calculation (see e.g. [9,
Proposition 4.2.4]) shows that there exists a constant C > 0 such that the probability to not visit x in the next n steps after
a given visit is � C/ log n. Using the strong Markov property one gets that the probability to make k + 1 visits by time n is
� exp(−Ck/ log n) and hence there exists some C ′ > 0 depending on M such that

P
[
Nn(x) � C ′(ln n)2] = o

(
n−M−2).

Moreover since U makes nearest-neighbor jumps, before time n it stays in a ball of radius n. Thus if N∗
n = supx Nn(x), then

P
[
N∗

n � C ′(lnn)2] = n2 × o
(
n−M−2) = o

(
n−M)

.

Thus if rn,U is the size of the range of U at time n, we get

P
[
rn,U � n/

(
C ′(ln n)2)] = o

(
n−M)

.

Let’s come back to the original process S = (X, Y ) now. We just observe that at time n one of the X or Y component
performed n/2 steps. Since each of these components is a simple random walk, we deduce from the previous estimate, that
before time n, X or Y will visit at least n/(2C ′(ln n)2) sites, with probability at least 1 − o(n−M). This gives the desired
lower bound for rn and concludes the proof of the lemma. �

We can finish now the proof of Proposition 1. As noticed in the introduction, observe that the X and Y components are
time changed simple random walks. Specifically we have the equality in law:(

(Xk, Yk),k � 1
) = ((

U (rk−1), V (k − rk−1)
)
,k � 1

)
, (1)

where U and V are two independent simple random walks on Z
2, and where by abuse of notation we also denote by rk

the size of the range of the (U , V ) process at kth step. More precisely rk may be defined recursively by r0 = 1 and for k � 1,

rk := #
{(

U (0), V (0)
)
, . . . ,

(
U (rk−1), V (k − rk−1)

)}
.

The proof of (1) is immediate by induction.
By using now Lemma 1 and the independence of U and V , we get

P
[
0 ∈ {Sn, . . . , S2n}

]
� P

[
0 ∈ {

U
(
n/(C lnn)2), . . . , U (2n)

}]
P
[
0 ∈ {

V (n/100), . . . , V (2n)
}] + o

(
n−M)

.

Thus Proposition 1 follows from the following lemma:

Lemma 2. Let U be the simple random walk on Z
2 and let t ∈ [n/(ln n)3,2n]. Then

P
[
0 ∈ {

U (t), . . . , U (2n)
}] = O

(
ln lnn

ln n

)
. (2)
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Proof. This lemma is standard, but we give a proof for the reader’s convenience. First let | · | denote the L1 norm on R
2 (i.e.

|(x1, x2)| = |x1| + |x2| for all (x1, x2) ∈ R
2). Since t � n/(ln n)3, it is well known (see e.g. [3, Theorem 1, p. 542]) that

P

[∣∣U (t)
∣∣ �

√
n

(ln n)3

]
= O

(
(lnn)−1).

Moreover it is known (see e.g. [8, Proposition 1.6.7]) that

Px[τ0 < τ|x|(ln |x|)4 ] = O
(

ln ln |x|
ln |x|

)
,

where Px denotes the law of U starting from x and for any r � 0,

τr = inf
{
k > 0: r <

∣∣U (k)
∣∣ � r + 1

}
.

But if |x| � √
n/(ln n)3, then

√
n ln n = O(|x|(ln |x|)4). On the other hand (see e.g. [9, Proposition 2.1.2])

P[τ√
n ln n � 2n] = O

(
n−1).

Notice finally that if |x| � √
n/(ln n)3, then

ln ln |x|
ln |x| = O

(
ln ln n

lnn

)
.

The lemma follows by using Markov’s property at time t = n/(ln n)3,

P
[
0 ∈ {

U (t), . . . , U (2n)
}]

� P

[∣∣U (t)
∣∣ �

√
n

(lnn)3

]
+ max

|x|>√
n/(lnn)3

Px(τ0 � 2n)

� O
(
(ln n)−1) + max

|x|>√
n/(lnn)3

Px[τ0 < τ|x|(ln |x|)4 ] + P[τ|x|(ln |x|)4 � 2n]

� O
(
(ln n)−1) + O

(
ln ln n

lnn

)
+ O

(
n−1) = O

(
ln ln n

lnn

)
as required. �

The proof of Theorem 1 is now finished. �
Remark 1. A slight modification of the proof actually shows that M(2,2) is transient for any finite initial configuration of
visited sites. One just has to replace rk−1 in (1) by rk−1 − nk−1, where nk is the number of sites (different from the origin)
which are considered as visited at time 0, and effectively visited by the (U , V ) process in the k first steps. Since supk nk is
finite this does not change the rest of the proof. This is of course not always the case if this configuration is infinite. For
instance if we decide that all sites of the form (0,0,∗,∗) are already visited at time 0, then the X component will never
move and M(2,2) will not be transient.
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