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Consider the functions Φα
n defined as F Φα

n (t) = t
1
2 lαn (2t), where lαn is a Laguerre function

and Γ (a,b) = {(ambk,am)}k,m∈Z is a hyperbolic lattice. We prove that, if the wavelet system
W (Φα

n ,Γ (a,b)) is a frame of H2(C+), then b log a < 4π n+1
α+1 .

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Soit le fonction Φα
n de la forme F Φα

n (t) = t
1
2 lαn (2t), ou lαn est une fonction de Laguerre

et Γ (a,b) = {(ambk,am)}k,m∈Z est une reseau hyperbolique. Notre resultat principal dit
que, si l’ ensemble d’ondelettes W (Φα

n ,Γ (a,b)) est un frame pour H2(C+), alors, b log a <

4π n+1
α+1 .

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

For every x ∈ R and s ∈ R
+ , let z = x + is and define

πz f (t) = s− 1
2 f

(
s−1(t − x)

)
. (1)

Fix a function g �= 0. Then the continuous wavelet transform with respect to a wavelet g is defined as

W g f (x, s) = 〈 f ,πz g〉L2(R), (2)

where the function g is admissible (its Fourier transform belongs to L2(R+,ω−1 dω)). Let Γ (a,b) = {(ambk,am)}k,m∈Z . We
say that W (g,Γ (a,b)) is a wavelet frame for H2(C+), the standard Hardy space of the upper half-plane, if there exist
constants A, B > 0 such that, for every f ∈ H2(C+),

A‖ f ‖2
H2(C+)

�
∑

z∈Γ (a,b)

∣∣〈 f ,πz g〉∣∣2 � B‖ f ‖2
H2(C+)

. (3)

The problem of characterizing all lattices Γ (a,b) for which W (g,Γ (a,b)) is a frame is only solved for the special windows
known as Poisson wavelets, defined via their Fourier transforms by

(F ψα)(t) = tαe−t . (4)
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In this case the results follow from the sampling results for the Bergman space of analytic functions [8,9]. It has been shown
that only the Poisson wavelet leads to spaces of analytic functions [4].

In this note we investigate wavelet frames with analyzing wavelets Φα
n defined via their Fourier transforms F as

F Φα
n (t) = t

1
2 lαn (2t), with lαn (t) = tα/2e−t/2

n∑
k=0

(−1)k
(

n + α
n − k

)
tk

k! . (5)

The function lαn (t) is the Laguerre function (the Laguerre polynomial times the weight function) and it can also be evaluated
from a three-term recurrence formula. The set {Φα

n }∞n=0 forms a basis of space of admissible functions. These frames can
be seen as a sort of “wavelet analogue” of the Gabor frames with Hermite functions [5], for which sufficient conditions are
known. In the case of wavelet frames, we are interested in necessary conditions, since, unlike Gabor frames, there are no
universal necessary conditions. Our main result is as follows:

Theorem 1.1. If W (Φα
n ,Λ) is a wavelet frame in H2(C+), then

b log a < 4π
n + 1

α + 1
. (6)

One should notice that using the density concepts of [9,7,10], we arrive at the constant b log a as the density of the
hyperbolic lattice.

Our proof of Theorem 1 is based on an analogue of Proposition 3.2 in [5], which expresses the wavelet transform with
respect to Φα

n as a combination of derivatives of an analytic function. To see that the inequality (6) is strict we use a
stability property of wavelet frames, which is easily deduced from [4, Theorem 4.4] and allows to adapt the methods of [8].
The analogue of Proposition 3.2 in [5] is (see Section 2 for the definition of the Bergman transform):

Proposition 1.2. Let f ∈ H2(C+) and F = Berα f , the Bergman transform of f . Then

WΦα
n

f (x, s) =
n∑

k=0

(2i)k

k!
(

n + α
n − k

)
s

α
2 +k F (k)(z). (7)

To ease the reading, we follow the presentation scheme of [5]. The next section contains the required tools and Section 3
sketches the proof of Theorem 1.1. In a forthcoming paper [3], we will investigate the corresponding wavelet superframe
by constructing a polyanalytic Bergman transform which connects to a sampling problem in polyanalytic Bergman spaces
of C

+ . The transform shares operator theoretical features with the polyanalytic Bargmann transform of [1] which connects
to the Gabor superframe of [6]. Results using Seip’s density [9] can be obtained for spaces in the unit disc D [2] which,
unlike the case of analytic functions, are not equivalent to the upper half-plane.

2. Tools

The Hardy space H2(C+), is constituted by the analytic functions on the upper half-plane such that

sup
0<s<∞

∫
R

∣∣ f (x + is)
∣∣2

dx < ∞. (8)

Let α > −1. The weighted Bergman space in the upper half-plane, Aα(C+), is constituted by analytic functions defined on the
upper half-plane and such that∫

C+

∣∣ f (z)
∣∣2

sα dμ+(z) < ∞, (9)

where dμ+(z) stands for area measure on C
+ . The Bergman transform of order α is the wavelet transform with a Poisson

wavelet times a weight:

Berα f (z) = s− α
2 Wψ α+1

2

f (−x, s) =
∫

R+
t

α+1
2 F f (t)eizt dt. (10)

It is an isomorphism Berα : H2(C+) → Aα(C+) (this follows from the isometric properties of the wavelet transform and the
fact that the image of Berα contains the reproducing kernel of Aα(C+)).

The characteristic function of the hyperbolic lattice Γ (a,b) is the analytic function in the upper half-plane defined by
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h(z) =
( ∞∏

k=0

sinπb−1a−k(iak − z)

sinπb−1a−k(iak + z)

)( ∞∏
m=1

e
2π
b

sinπb−1am(z − ia−m)

sinπb−1am(z + ia−m)

)
. (11)

It vanishes in Γ (a,b) and satisfies [8] the estimate:∣∣h(z)
∣∣ � s− 2π

b ln a . (12)

3. Proofs

3.1. Proof of Proposition 1.1

From a close inspection of formulas (5) and (4) one realizes that

lαn (t) = t− 1
2

n∑
k=0

(−1)k

k!
(

n + α
n − k

)
(F ψα

2 +k+ 1
2
)

(
t

2

)
. (13)

Thus, linearity and the inverse Fourier transform give:

Φα
n (t) =

n∑
k=0

(−2)k

k!
(

n + α
n − k

)
ψα

2 +k+ 1
2
(t). (14)

Combining (14) with (2) and (10) results in

WΦα
n

f (x, s) =
n∑

k=0

(−2)k

k!
(

n + α
n − k

)
s

α
2 +k Berα+2k f . (15)

Now, if f ∈ H2(C+) and F = Berα f , differentiation of (10) under the integral transform shows that F (k)(z) =
ik Berα+2k f (z). This yields (7).

3.2. Stability of wavelet frames

We call wavelet space, W g , to the image space of the wavelet transform associated with g . The sequence Γ = {(x, s)} is a
sampling set for W g if there exist constants A, B such that, for every f ∈ H2(C+),

A‖W g f ‖2
L2(C+,s−1)

�
∑

(x,s)∈Γ

∣∣W g f (x, s)
∣∣2 � B‖W g f ‖2

L2(C+,s−1)
. (16)

Since ‖W g f ‖L2(C+,s−1) and ‖ f ‖H2(C+) are equivalent norms, then the definition of the wavelet transform (2) shows that
sampling sets correspond to wavelet frames. Thus, we can recast the stability result with respect to the jittered error of
sampling sequences for wavelet spaces [4, Theorem 4.4], as:

Proposition 3.1. Suppose that W (g,Λ) is a wavelet frame. Then there exists δ > 0 such that if the pseudohyperbolic distance ρ(z, w)

is < δ for all z ∈ Λ, w ∈ Γ , then W (g,Γ ) is also a frame.

3.3. Proof of Theorem 1.1

Argue by contradiction assuming that b log a > 4π n+1
α+1 . This implies the existence of ε > 0 such that 2π(n+1)

b log a = α+1−ε
2 .

Now apply (12) to H(z) = (z + i)εhn+1(z), yielding |H(z)| � |z + i|ε s− α+1−ε
2 . Changing variables to the unit disc by setting

z = i w+1
1−w , and applying the bound on H , one obtains the following estimate:∫
C+

∣∣H(z)
∣∣2

sα dμ+(z) �
∫
D

(
1 − |w|2)−1+ε

dA(w) < ∞,

where dA(w) stands for area measure in the unit disc. Thus, H(z) ∈ Aα(C+). Now, since Berα : H2(C+) → Aα(C+) is an
isomorphism, there exists f ∈ H2(C+) such that Berα f = H(z). Using (7) of Proposition 1.1 one easily sees that WΦα

n
f

vanishes in Γ (a,b). Consequently, W (Φα
n ,Γ (a,b)) cannot be a wavelet frame for H2(C+). Thus, b log a � 4π n+1

α+1 .
To prove that the inequality is strict, observe that, by Proposition 3.1, there exists a δ > 0 such that, if W (Φα

n ,Γ (a,b))

is a frame and Γ0 = {wmk} satisfies ρ(am(bk + i), wmk) < δ for all m,k, where ρ(. , .) is the pseudohyperbolic distance
in the upper half-plane, then W (Φn,Γ0) is also a frame. Thus, if b log a = 4π n+1

α+1 , we can choose δ0 such that wmk =
am(bk + i(1 − δ0)) satisfies ρ(Γ (a,b), wmk) < δ and therefore is a sampling sequence. This is impossible by the argument in
the previous paragraph, since {wmk} = Γ (a,b/(1 − δ0)) and b/(1 − δ0) log a > b log a = 4π n+1 .
α+1
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