
C. R. Acad. Sci. Paris, Ser. I 349 (2011) 455–458
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Probability Theory

On the convergence of orthogonal series

Sur la convergence des systèmes orthogonaux

Witold Bednorz 1

Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 February 2011
Accepted 4 February 2011
Available online 4 March 2011

Presented by Michel Talagrand

In this Note we present a new approach to the complete characterization of the a.s.
convergence of orthogonal series. We sketch a new proof that a.s. convergence of∑∞

n=1 anϕn for all orthonormal systems (ϕn)∞n=1 is equivalent to the existence of a
majorizing measure on the set T = {∑∞

m=n a2
m: n � 1} ∪ {0}. The method is based on the

chaining argument used for a certain partitioning scheme.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous proposons une nouvelle approche pour démontrer que la convergence presque sure
de la série

∑∞
n=1 anϕn pour tous les systèmes orthogonaux (ϕn)∞n=1 est équivalente à

l’existence d’une mesure majorante sur l’ensemble T = {∑∞
m=n a2

m: n � 1}∪{0}. L’ingrédient
principal est une nouvelle méthode de construction de séries orthogonales.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

An orthonormal sequence (ϕn)∞n=1 on a probability space (Ω,F,P) is a sequence of random variables ϕn : Ω → R such
that Eϕ2

n = 1 and Eϕnϕm = 0 whenever n �= m. The problem we treat in this Note is how to characterize the sequences of
(an)∞n=1 for which the series

∞∑
n=1

anϕn converges a.e. for any orthonormal (ϕn)
∞
n=1, (1)

on all probability spaces (Ω,F,P). Note that we can assume an > 0, for n � 1. It occurs that the answer is related to the
analysis of the set

T =
{

n∑
m=1

a2
m: n � 1

}
∪ {0}.

A trivial observation is that to have the series convergent one needs T to be compact.
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The characterization should be stated in terms of geometry of T . There were several steps towards the general result.
For various applications it suffices to use the Rademacher–Menchov theorem (see [4]).

Theorem 1. Whenever
∞∑

n=1

a2
n log2(n + 1) < ∞,

then for each orthonormal sequence (ϕn)∞n=1 the series
∑∞

n=1 anϕn is a.e. convergent.

A more involved analysis is based on the study of regular partitions of T . Suppose that T ⊂ [0, M), then define
Ak = {A(k)

i : 0 � i < 4k}, k � 0 where A(k)
i = [i4−k M, (i + 1)4−k M) ∩ T . Let Nk = {i ∈ {0,1, . . . ,4k−1}: A(k)

i �= ∅} and
Tk = ⋃

i∈Nk
[i4−k M, (i + 1)4−k M). By ‖ · ‖ denote the L2-norm on L2(0,1). It is proved in [6] (see also [7]) that there exists

a permutation σ on N for which
∑∞

n=1 aσ(n)ϕn converges a.e. for any orthonormal (ϕn)∞n=1 if and only if ‖∑∞
k=1 1Tk ‖ < ∞.

Moreover (see [12] and [7])
∑∞

n=1 aσ(n)ϕn converges for all permutations σ on N and orthonormal (ϕn)∞n=1 if and only if∑∞
k=1 ‖1Tk ‖ < ∞.
The complete characterization of (1) was finally presented in [7,8]. The approach is based on a deep study of partitions

Ak , k � 0 and the following classical result of Tandori [12]:

Theorem 2. For each orthonormal sequence (ϕn)∞n=1 the series
∑∞

n=1 anϕn converges a.e. if and only if

E sup
m�1

(
m∑

n=1

anϕn

)2

< ∞.

Several equivalent conditions characterizing (1) are given in [8]. For our purposes we choose the language of majorizing
measures. Let

d(s, t) = √|s − t|, s, t ∈ T , B(t, ε) = {
s ∈ T : d(s, t) � ε

}
.

A Borel probability measure μ on T is called majorizing (in the orthogonal setting) if

sup
t∈T

M∫
0

(
μ

(
B(t, ε)

))− 1
2 dε < ∞.

Theorem 3. The series (1) converges for all orthonormal (ϕn)∞n=1 if and only if there exists a majorizing measure on T .

2. Majorizing measures in the orthogonal setting

Majorizing measures were invented to characterize sample boundedness for certain stochastic processes. The simplest
way to control a process X(t), t ∈ T is to consider all its increments X(t) − X(s), s, t ∈ T . We say that a process X(t), t ∈ T
is of suborthogonal increments if

E
(

X(t) − X(s)
)2 � d(s, t)2, s, t ∈ T . (2)

Under the increment condition the existence of a majorizing measure implies sample boundedness. The result was first
proved in [9] and generalized in [1]. By Theorem 3.2 in [1]:

Theorem 4. If there exists a majorizing measure m on T , then for each process X(t), t ∈ T that satisfies (2) the following inequality
holds:

E sup
s,t∈T

(
X(t) − X(s)

)2 � 16 · 5
5
2

(
sup
t∈T

M∫
0

(
μ

(
B(t, ε)

))− 1
2 dε

)2

< ∞.

The difficult part is to give a complete characterization of sample boundedness for a certain process or a class of pro-
cesses. The first example [3] (cf. [10]) which validated the majorizing measure definition was that for any ultrametric space
the existence of a majorizing measure is a sufficient and necessary condition for all processes of bounded increments to
be sample bounded. Then appeared the characterization of sample boundedness for Gaussian processes [9] and many other
canonical processes [11,5]. Also, the author could generalize the result for the ultrametric spaces to a setting [2] which in
the special suborthogonal case gives:
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Theorem 5. Whenever each process X(t), t ∈ T that satisfies (2) is sample bounded then there exists a majorizing measure on T .

Consequently Theorems 4 and 5 imply that the sample boundedness of all suborthogonal processes on T is equivalent
to the existence of a majorizing measure. The proof of Theorem 5 is based on Fernique’s [3] (see also [10]) technique of
constructing a majorizing measure.

Theorem 6. Whenever each probability Borel measure μ on T is weakly majorizing i.e.

sup
μ

∫
T

M∫
0

(
μ

(
B(t, ε)

))− 1
2 dεμ(dt) < ∞

then there exists a majorizing measure on T .

Now we turn to the main question of characterizing (1). We say that a process X(t), t ∈ T has orthogonal increments if

E
(

X(t) − X(s)
)2 = d(s, t)2, s, t ∈ T . (3)

Recall that T = {∑n
m=1 a2

m: n � 1} ∪ {0}. There is a bijection between orthonormal series
∑∞

n=1 anϕn and processes with
orthogonal increments on T . Namely for each orthonormal sequence (ϕn)∞n=1 we define the process X(t) = ∑m

n=1 anϕn , for

t = ∑m
n=1 a2

n , X(0) = 0 and for each process X(t), t ∈ T we define orthonormal ϕm = a−1
m (X(

∑m
n=1 a2

n) − X(
∑m−1

n=0 a2
n)), m > 1

and ϕ1 = X(a2
1) − X(0). Therefore by Theorem 2 each orthogonal series

∑∞
n=1 anϕn is a.e. convergent if and only if there

exists a universal constant M < ∞ such that

E sup
t∈T

∣∣X(t) − X(0)
∣∣2 � M (4)

for all orthogonal processes on T . This class of processes is significantly smaller than the class of suborthogonal processes.
Our main result is the following:

Theorem 7. If all orthogonal processes satisfy (4) then

sup
μ

∫
T

M∫
0

(
μ

(
B(t, ε)

))− 1
2 � M < ∞.

Together with Theorems 4, 5, 6 this completes a new proof of Theorem 3. The proof of Theorem 7 is based on the study
of natural partitions Ak , k � 0 and a special partitioning scheme.

3. Regular partitions

We start the analysis translating the language of weakly majorizing measures into the language of natural partitions Ak ,
k � 0. Note that if t ∈ A(k)

i then A(k)
i ⊂ B(t,2−k M), and therefore

∫
T

(
μ

(
B
(
t,2−k M

)))− 1
2 μ(dt) �

4k−1∑
i=0

∫
A(k)

i

(
μ

(
A(k)

i

))− 1
2 μ(dt) �

4k−1∑
i=0

(
μ

(
A(k)

i

)) 1
2 .

Consequently

∫
T

M∫
0

(
μ

(
B(t, ε)

))− 1
2 dεμ(dt) � M

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A(k)

i

)) 1
2 .

The second point is that given μ not all subsets A(k)
i ∈ Ak are important. Let 1 < c < 2 < C . We define I(k) as the set of

indexes i ∈ {0,1, . . . ,4k − 1} for which A(k)
i �= ∅ and

C−1μ
(

A(k−1)
[i/4]

)
� μ

(
A(k)

i

)
� c−1μ

(
A(k)

4[i/4] ∪ A(k)
4[i/4]+2

)
� c−1μ

(
Ak−1

[i/4]
)
, if 2 | i,

C−1μ
(

A(k−1)
[i/4]

)
� μ

(
A(k)

i

)
� c−1μ

(
A(k)

4[i/4]+1 ∪ A(k)
4[i/4]+3

)
� c−1μ

(
Ak−1

[i/4]
)
, if 2 � i.

The main observation is that to show that μ is weakly majorizing one need only care about A(k) , i ∈ I(k) .
i
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Proposition 8. There exist 1 < c < 2 < C such that for each probability Borel measure μ on T the following inequality holds:

∫
T

M∫
0

(
μ

(
B(t, ε)

))− 1
2 � L

[
1 +

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A(k)

i

)) 1
2 1i∈I(k)

]
,

where L < ∞ is a universal constant.

4. The partitioning scheme

We follow an idea of Talagrand [9] of considering suitable set functionals. We define the set functionals Fk : Ak → R,
k � 0 by

Fk
(

A(k)
i

) = sup
Y

E sup
t∈A(k)

i

Y (t), for 0 � i < 4k

where the supremum is taken over all process Y (t), t ∈ Ā(k)
i (where Ā(k)

i = A(k)
i ∪ {i4−k M, (i + 1)4−k M}), such that EY (t) = 0

for all t ∈ Ā(k)
i and

E
(
Y (t) − Y (s)

)2 = |s − t|(1 − 4k M−1|s − t|), for all s, t ∈ Ā(k)
i .

A trivial observation is that (3) implies F0(T ) < ∞. The partitioning scheme is based on the following induction step:

Proposition 9. There exists a universal constant K < ∞ such that for each A(k−1)
i ∈ Ak−1 , k � 1, 0 � i < 4k−1 the following inequality

holds:

(
μ

(
A(k−1)

i

)) 1
2 Fk−1

(
A(k−1)

i

)
� 1

K
2−k

3∑
j=0

(
μ

(
A(k)

4i+ j

)) 1
2 14i+ j∈I(k) +

3∑
j=0

(
μ

(
A(k)

4i+ j

)) 1
2 Fk

(
A(k)

4i+ j

)
.

Since F0(T ) < ∞ Proposition 9 implies

∞∑
k=1

2−k
4k−1∑
i=0

(
μ

(
A(k)

i

)) 1
2 1i∈I(k) � K F0(T ) < ∞

and therefore Theorem 7 follows from Proposition 8.
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