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We study slant submanifolds of quaternion Kaehler manifold and in particular of a
quaternion projective space. We obtain a sharp estimate of the Ricci tensor of a slant
submanifold M in a quaternion projective space QP m(4c) in terms of the main extrinsic
invariant, namely the square mean curvature.
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r é s u m é

Nous définissons et étudions des sous-variétés obliques d’une variété Kahlerienne quater-
nionienne et plus particuliérement d’un espace projectif quaternionien. Nous obtenons une
estimation fine du tenseur de Ricci d’une sous-variété oblique M dans un espace projectif
quaternionien, en termes de l’invariant extrinsèque principal, à savoir la courbure moyenne
quadratique.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The differential geometry of slant submanifolds has shown an increasing development since B.Y. Chen defined slant
immersion in complex geometry as a natural generalization of both holomorphic immersion and totally real immersion
(see [1]). Since then many papers appeared on this topic [3]. Recently, B. Sahin [5] studied slant submanifolds of quaternion
Kaehler manifolds and gave characterization theorems and examples of slant submanifolds of quaternion Kaehler manifolds.
The aim of this Note is to obtain a sharp estimate of the Ricci tensor of a slant submanifold M in a quaternion projective
space QPm(4c) in terms of the main extrinsic invariant, namely the square mean curvature.

The main result of this Note is as follows:

Theorem 1.1. Let M be an n-dimensional θ -slant submanifold in a quaternion projective space QPm(4c). Then

(i) For each unit vector X ∈ T p M, the Ricci tensor S(X) satisfies the inequality

S(X) � n2

4
H2 + (n − 1)c + 9c cos2 θ. (1)
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(ii) The equality case of (1) holds identically for all unit tangent vectors at p if and only if either p is a totally geodesic point or n = 2
and M is totally umbilical point.

2. Preliminaries

Let Mm be an m-dimensional Riemannian manifold with metric g . Then Mm is called a quaternion Kaehlerian manifold
[4] if there exists a 3-dimensional vector bundle V of tensors of type (1,1) with local basis of almost Hermitian structures
J1, J2, J3 such that

(i) J1 J2 = − J2 J1 = J3, J2 J3 = − J3 J2 = J1, J3 J1 = − J1 J3 = J2,
(ii) ∇ X Ja = ∑3

b=1 Q ab(X) Jb , a = 1,2,3 for all vector fields X tangent to M , where ∇ denotes the Riemannian connection
in M and Q ab are certain 1-forms locally defined on M such that Q ab + Q ba = 0.

A quaternion projective space, denoted by QPm(4c), is a quaternion Kaehlerian manifold of constant quaternionic sec-
tional curvature 4c and its curvature tensor is given by [6]

R(X, Y )Z = c
{

g(Y , Z)X − g(X, Z)Y + g(IY , Z)I X − g(I X, Z)IY + 2g(X, IY )I Z + g( J Y , Z) J X

− g( J X, Z) J Y + 2g(X, J Y ) J Z + g(K Y , Z)K X − g(K X, Z)K Y + 2g(X, K Y )K Z
}
, (2)

for vectors X , Y , Z tangent to QPm .

Definition. (See [5].) Let M be a submanifold of a quaternion Kaehler manifold M . Then we say that M is a slant submanifold
if for each non-zero vector X tangent to M at p, the angle θ(X) between Ja X and T p M (a = 1,2,3) is constant, i.e. it does
not depend on choice of p ∈ M and X ∈ T p M.

In this case, M is usually named a θ -slant submanifold. In particular, it is obvious that both quaternion submanifolds
and totally real submanifolds are slant submanifolds corresponding to θ = 0 and θ = π

2 respectively.
We denote by H the mean curvature vector, that is [2]

H(p) = 1

n

n∑
i=1

h(ei, ei). (3)

Also, we set

hr
i j = g

(
h(ei, e j), er

)
, ‖h‖2 =

n∑
i, j=1

g
(
h(ei, e j),h(ei, e j)

)
. (4)

3. Ricci tensor and squared mean curvature

Proof of Theorem 1.1. (i) Let M be a slant submanifold of a quaternion projective space QPm(4c). Let p ∈ M and {e1, . . . , en}
an orthonormal basis of T p M and {en+1, . . . , e4m} an othonormal basis of T ⊥

p M . The curvature tensor R of M is related to

the curvature tensor R of M by the following Gauss equation

R(X, Y , Z , W ) = R(X, Y , Z , W ) + g
(
h(X, W ),h(Y , Z)

) − g
(
h(X, Z),h(Y , W )

)
. (5)

For any X tangent to M , we put

Ja X = Ta X + Fa X, a = 1,2,3, (6)

where Ta X (resp. Fa X ) denotes tangential (resp. normal) component of Ja X .
Then using Eq. (6) in Gauss equation we have

S(X, Y ) = c

{
(n − 1)g(X, Y ) + 3

3∑
a=1

g(Ta X, TaY )

}
+ g

(
tr h,h(X, Y )

) − g
(
h(Y ),h(X)

)
. (7)

By plugging the θ -slant condition [5]

g(Ta X, TaY ) = cos2 θ g(X, Y ) (8)
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for any pair X, Y of vectors in T p M and any p in M , a = 1,2,3, we get

S(X, Y ) = c
(
n − 1 + 9 cos2 θ

)
g(X, Y ) + g

(
tr h,h(X, Y )

) − g
(
h(Y ),h(X)

)
= c

(
n − 1 + 9 cos2 θ

)
g(X, Y ) +

4m∑
r=n+1

(
tr h(r))g

(
hr(X), Y

) − g
(
h(r)(X),h(r)(Y )

)

= c
(
n − 1 + 9 cos2 θ

)
g(X, Y ) + 1

4
| tr h|2 −

4m∑
r=n+1

g

(
h(r)(X) − 1

2

(
tr h(r))X,h(r)(Y ) − 1

2

(
tr h(r))Y

)
(9)

by setting h(r)(X) = g(h(X), er), r = n + 1, . . . ,4m (each h(r) is then an endomorphism of T M). From this we readily infer
the following explicit expression of the Ricci tensor S of M:

S =
(

c
(
n − 1 + 9 cos2 θ

) + 1

4
| tr h|2

)
Id −

4m∑
r=n+1

(
h(r) − 1

2

(
tr h(r))Id

)2

. (10)

Parts (i) and (ii) of the main theorem directly follows from the last expression obtained.
The converse of part (ii) is easy to prove. This completes the proof of Theorem 1.1. �

Remark. In particular, similar results can be obtained for quaternion submanifolds and totally real submanifolds by taking
θ = 0 and θ = π

2 respectively.
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