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We develop an information-theoretic perspective on some questions in convex geometry,
providing for instance a new equipartition property for log-concave probability measures,
some Gaussian comparison results for log-concave measures, an entropic formulation of
the hyperplane conjecture, and a new reverse entropy power inequality for log-concave
measures analogous to V. Milman’s reverse Brunn–Minkowski inequality.
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r é s u m é

Nous développons un point de vue de théorie de l’information sur certains problèmes de
géométrie des convexes, fournissant par exemple une nouvelle propriété d’équipartition des
mesures de probabilités log-concaves, une inégalité de comparaison gaussienne de l’entro-
pie de mesures log-concaves, une formulation entropique de la conjecture de l’hyperplan,
et une nouvelle inégalité inverse concernant l’entropie exponentielle pour des mesures log-
concaves, analogue à l’inégalité inverse Brunn–Minkowski due à V. Milman.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This note announces some of the results obtained in [3–5]. Given a random vector X in R
n with density f (x), the entropy

power is defined by N (X) = e2h(X)/n, where, with a common abuse of notation, we write h(X) for the Shannon entropy
h( f ) := − ∫

Rn f log f .

Theorem 1.1. If X and Y are independent random vectors in R
n with log-concave densities, there exist affine entropy-preserving maps

ui : R
n → R

n such that

N ( X̃ + Ỹ ) � C
(

N (X) + N (Y )
)
,

where X̃ = u1(X), Ỹ = u2(Y ), and where C is a universal constant.

Observe that the Shannon–Stam entropy power inequality [15] implies that N ( X̃ + Ỹ ) � N (X) + N (Y ) is always true.
Thus Theorem 1.1 may be seen as a reverse entropy power inequality for log-concave measures. The proof of this assertion,
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outlined in Section 3, is based on a series of propositions introduced in Section 2 including V. Milman’s result on the exis-
tence of M-ellipsoids. Specializing to uniform distributions on convex bodies, we show that Theorem 1.1 recovers Milman’s
reverse Brunn–Minkowski inequality [11]. One may also think of Theorem 1.1 as completing the usual analogy between the
Brunn–Minkowski and entropy power inequalities (see, e.g., [7]).

2. Intermediate results

2.1. An equipartition property

Let X be a random vector taking values in R
n , and suppose its distribution has a density f with respect to Lebesgue

measure on R
n . The random variable h̃(X) = − log f (X) may be thought of as the “information content” of X . Note that the

entropy is h(X) = Ẽh(X).
Because of the relevance of the information content in information theory, probability, and statistics, it is intrinsically

interesting to understand its behavior. In particular, a natural question arises: Is it true that the information content con-
centrates around the entropy in high dimension? In general, there is no reason for such a concentration property to hold.
However, the following proposition shows that in fact, such a property holds uniformly for the entire class of log-concave densi-
ties:

Theorem 2.1. If X has a log-concave density f on R
n, then for 0 � ε � 2,

P
{∣∣∣∣ h̃(X)

n
− h(X)

n

∣∣∣∣ � ε

}
� 4e−ε2n/16.

No normalization whatsoever is required for this result, which is proved in [3] using the localization lemma of Lovász–
Simonovits, and certain reverse Hölder type inequalities for log-concave measures.

Equivalently, with high probability, f (x)2/n is very close to the entropy power N(X) = exp{ 2
n h(X)}, and the distribution

of X itself is effectively the uniform distribution on the class of typical observables, or the “typical set” (defined to be the
collection of all points x ∈ R

n such that f (x) lies between e−h(X)−nε and e−h(X)+nε , for some small fixed ε > 0). The effective
uniformity of the distribution of X on some compact set, entailed by this concentration result, may be seen as an extension
of the asymptotic equipartition property (or Shannon–McMillan–Breiman theorem) to non-stationary stochastic processes with
log-concave marginals (cf. [3]).

If one is more interested in the effective support rather than an effective uniformity, one can simply consider a superlevel
set (necessarily convex and compact) of the density f instead of the annular region above. This effective support on a convex
set implied by Theorem 2.1 allows (see [5]) the transference of some results from the setting of convex bodies to that of log-
concave measures, in particular, the existence of M-ellipsoids [11–14]. (Such a transference technique based on looking at
superlevel sets of log-concave densities has been anticipated before, e.g., by [9], but Theorem 2.1 refines those observations
and identifies the underlying concentration phenomenon.)

Corollary 2.2. Let μ be a probability measure on Rn with log-concave density f such that ‖ f ‖∞ � 1 (where ‖ f ‖∞ is the essential
supremum and hence the maximum of f ). Then there exists an ellipsoid E of volume 1 such that μ(E )1/n � cM for some universal
constant cM ∈ (0,1).

Equivalently, for some linear volume-preserving map u : Rn → Rn , μu−1(D)1/n � cM , where D is the Euclidean ball of
volume one.

2.2. Entropy and the maximal density value

Trivially h(X) � log ‖ f ‖−1∞ . In fact, one can also bound the entropy from above using the maximal density value under
log-concavity (see [4]).

Theorem 2.3. If a random vector X in Rn has log-concave density f , then

log‖ f ‖−1/n∞ � 1

n
h(X) � 1 + log‖ f ‖−1/n∞ .

The hyperplane conjecture or slicing problem (cf. Bourgain [6] or Ball [1]) asserts that there exists a universal, positive
constant c (not depending on n) such that for any convex set K of unit volume in R

n , there exists a hyperplane H passing
through its centroid such that the (n−1)-dimensional volume of the section K ∩ H is bounded below by c. There are several
equivalent formulations of the conjecture, all of a geometric or functional analytic flavor (even the ones that nominally
use probability). The current best bound known, due to Klartag [8], is Ω(n−1/4). Theorem 2.3 gives a purely information-
theoretic formulation of the hyperplane conjecture. For a random vector X in R

n with density f , let D(X) or D( f ) denote
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its relative entropy from Gaussianity (which is the relative entropy from the Gaussian g with the same mean and covariance
matrix, and also equals the difference h(g) − h( f )). The Entropic Form of the Hyperplane Conjecture [4] asserts that for any
log-concave density f on R

n , D( f ) � cn for some universal constant c. It is easy to see then that another equivalent form
of the hyperplane conjecture is that the entropic distance from independence (i.e., the relative entropy of any log-concave
measure from the product of its marginals) is also bounded by cn for some universal constant c. As an aside, Klartag’s result
combined with our equivalence implies that D( f ) � 1

4 n log n + cn for any log-concave f . This is already the first quantitative
demonstration of the spiritual closeness of log-concave measures to Gaussians, which has been observed in qualitative ways
numerous times (e.g., behavior as regards functional inequalities). Let us note en passant that entropy plays a role in Ball’s
[2] proof that the KLS conjecture implies the hyperplane conjecture.

3. Proof outline of Theorem 1.1

The following “submodularity” property of the entropy functional with respect to convolutions was obtained in [10]:
Given independent random vectors X , Y , Z in Rn with absolutely continuous distributions, we have

h(X + Y + Z) + h(Z) � h(X + Z) + h(Y + Z)

provided that all entropies are well-defined.
Let Z ∼ Unif(D), where D is the centered Euclidean ball with volume one. Since h(Z) = 0, the submodularity property

implies

h(X + Y ) � h(X + Y + Z) � h(X + Z) + h(Y + Z),

for random vectors X and Y in Rn independent of each other and of Z .
Let X and Y have log-concave densities. Due to homogeneity of Theorem 1.1, assume without loss of generality that

‖ f ‖∞ � 1 and ‖g‖∞ � 1. Then, our task reduces to showing that both N (X + Z) and N (Y + Z) can be bounded from
above by universal constants.

By Corollary 2.2, for some affine volume preserving map u : Rn → Rn , the distribution μ̃ of X̃ = u(X) satisfies
μ̃(D)1/n � cM with a universal constant cM > 0. Let f̃ denote the density of X̃ = u(X). Then the density p of S = X̃ + Z ,
given by p(x) = ∫

D f̃ (x − z)dz = μ̃(D − x), satisfies ‖p‖ � p(0) � cn
M . Applying Theorem 2.3 to the random vector S ,

N (S) � C‖p‖−2/n∞ � C · c−2
M , which completes the proof.

Remark 1. Recall C. Borell’s hierarchy of convex measures on Rn , classified by a parameter κ ∈ [−∞,1/n]. In this hierar-
chy, κ = 0 corresponds to the class of log-concave measures. When κ > 0, a κ-concave probability measure is necessarily
compactly supported on some convex set.

For any random vector X with values in A, there is a general upper bound h(X) � log |A|. Using Berwald’s inequality, we
provide a complementary estimate from below depending only on the “strength” of convexity of the density f of X : Let X
be a random vector in Rn having an absolutely continuous κ-concave distribution supported on a convex body A with 0 < κ � 1/n.
Then h(X) � log |A| + n log(κn). Note when κ = 1/n, this bound is sharp.

Assume a probability measure μ is κ ′-concave on Rn and a probability measure ν is κ ′′-concave on Rn . If κ ′, κ ′′ ∈ [−1,1]
satisfy

κ ′ + κ ′′ > 0,
1

κ
= 1

κ ′ + 1

κ ′′ , (1)

then their convolution μ ∗ ν is κ-concave. Hence, if random vectors X1 and X2 are independent and uniformly distributed
in convex bodies A1 and A2 in Rn , then the sum X1 + X2 has a 1

2n -concave distribution supported on the convex body
A1 + A2. The preceding entropy bound then implies that h(X1 + X2) � log |A1 + A2| − n log 2. This immediately allows one
to deduce Milman’s reverse Brunn–Minkowski inequality from Theorem 1.1.

Remark 2. Theorems 1.1 and 2.3 have been extended to the larger class of convex measures [5,4].
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