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We give an elementary proof of the Kontsevich conjecture that asserts that the iterations
of the noncommutative rational map Kr : (x, y) �→ (xyx−1, (1 + yr)x−1) are given by non-
commutative Laurent polynomials.
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r é s u m é

Nous proposons une démonstration élémentaire d’une conjoncture de Kontsevich qui af-
firme que l’itération de l’application non-commutative rationnelle Kr : (x, y) �→ (xyx−1, (1+
yr)x−1) est donnée par des polynômes de Laurent non-commutatifs.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The aim of this Note is to give an elementary proof of the following Kontsevich conjecture.
Recall that the Kontsevich map Kr , r ∈ Z>0, is the following (birational) automorphism of a noncommutative plane (i.e.,

of the free skew-field with generators x and y):

Kr : (x, y) �→ (
xyx−1,

(
1 + yr)x−1).

Conjecture 1 (M. Kontsevich). For any r1, r2 ∈ Z>0 all iterations · · · Kr1 Kr2 Kr1︸ ︷︷ ︸
k

(x, y), k � 1, are given by noncommutative Laurent

polynomials in x and y.

The conjecture extends the rank 2 Laurent phenomenon established previously for cluster algebras and their quantum
versions (see [4,6,5,2,1]) to the “fully noncommutative” setting.

The Kontsevich conjecture was first proved for r1 = r2 = 2 by A. Usnich in [8] and was later settled by A. Usnich in
[9] in greater generality when r1 = r2 = r (with 1 + yr replaced by any monic palindromic polynomial H(y)) by means of
derived categories. Independently, Conjecture 1 was verified for (r1, r2) ∈ {(2,2), (4,1), (1,4)} in [3] along with the positivity
conjecture: for (r1, r2) ∈ {(2,2), (4,1), (1,4)} all noncommutative Laurent polynomials in question have nonnegative integer
coefficients.

Our goal is to give a short proof of Conjecture 1 by adjusting the ideas of [4,6,5,2,1] to the noncommutative rank 2
setting. Note, however, that there is currently no theory of “fully noncommutative” cluster algebras, as well as a higher rank
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Kontsevich conjecture. We are planning to construct examples of such higher rank noncommutative clusters elsewhere and
thus provide some higher rank analogues of the Kontsevich conjecture.

To present our proof of Conjecture 1, we need some notation. Denote

(xk, yk) := · · · Kr1 Kr2 Kr1︸ ︷︷ ︸
k

(x, y)

and denote z := [x, y] = xyx−1 y−1. Then it is easy to see by induction that [xk, yk] = [x, y] = z for all k. This taken together
with the recursion xk+1 = xk ykx−1

k and yk+1 = (1 + yrk
k )x−1

k , where

rk =
{

r1 if k is odd,

r2 if k is even,
(1)

gives the following three recursions (they first appeared in [3, Section 2.2])

xk+1 = zyk,

yk+1zyk−1 = 1 + yrk
k , (2)

yk+1zyk = yk yk+1. (3)

Let F2 = Q〈y±1
1 , y±1

2 〉 be the group algebra of the free group in 2 generators. It was proved by A.I. Malcev (see, e.g., [7,
Section 8.7]) that F2 is a divisible algebra, i.e., it embeds in a division ring (we denote the smallest one by Frac(F2)).

Define elements yk ∈ Frac(F2), k ∈ Z \ {1,2}, recursively by Eq. (2) where z := [y−1
2 , y1] = y−1

2 y1 y2 y−1
1 .

Note that y0, y3 ∈ F and let A = A(r1, r2) be the subalgebra of F generated by y0, y1, y2, y3, z, z−1. We will refer to A
as a (purely) noncommutative cluster algebra of type (r1, r2).

Lemma 2. The elements yk ∈ Frac(F2) satisfy for all k ∈ Z Eq. (3).

Proof. Indeed, (3) is obvious for k = 1. Let us prove it for k � 1 by induction. We will use the inductive hypothesis in the
form yk y−1

k−1z−1 = y−1
k−1 yk . Indeed, since yk+1z = (1 + yk)

rk y−1
k−1, we obtain

yk+1zyk − yk yk+1 = (1 + yk)
rk y−1

k−1 yk − yk(1 + yk)
rk y−1

k−1z−1

= (1 + yk)
rk y−1

k−1 yk − (1 + yk)
rk yk y−1

k−1z−1

= (1 + yk)
rk y−1

k−1 yk − (1 + yk)
rk y−1

k−1 yk = 0

by the inductive hypothesis. The relation (3) for k � 0 also follows. �
Thus, based on the above discussion, Conjecture 1 directly follows from our main result.

Main Theorem 3. Each yk belongs to A, e.g., yk is a noncommutative Laurent polynomial in y1, y2 .

Proof. Denote by Ak = Ak(r1, r2) the subalgebra of F2 generated by yk, yk+1, yk+2, yk+3, z±1. It suffices to prove the fol-
lowing result (which is a noncommutative version of [2, Formula (4.12)] and [1, Lemma 5.8]).

Theorem 4. Ak = A for all k ∈ Z.

Proof. Since A = A0, it suffices to prove that Ak = Ak+1 for k ∈ Z, i.e., that for all k ∈ Z one has

yk+4 ∈ Ak, yk ∈ Ak+1. (4)

Proposition 5. For each n ∈ Z one has: yk+4z = zyk(yk+3z)rk+1 − ∑rk+1−1
j=0 (zyk+1)

j z(yk+2z)rk−1(yk+3z) j .

Proof. For simplicity (and without loss of generality) we assume that k = 0. We start with the following technical result.

Lemma 6. For each m � 0 we have: ym
1 (y3z)m = 1 + ∑m−1

k=0 yk
1(y2z)r2 (y3z)k.

Proof. We proceed by induction on m. For m = 0 the assertion is clear. Assume that m > 0 and it holds for m − 1. Let us
prove it for m. Note that (2) and (3) imply that

yk−1 yk+1z = 1 + (ykz)rk . (5)
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Indeed, using (5), we obtain

ym
1 (y3z)m = ym−1

1 (y1 y3z)(y3z)m−1 = ym−1
1

(
1 + (y2z)r2

)
(y3z)m−1 = ym−1

1 (y2z)r2(y3z)m−1 + ym−1
1 (y3z)m−1

= ym−1
1 (y2z)r2(y3z)m−1 + 1 +

m−2∑
k=0

yk
1(y2z)r2(y3z)k = 1 +

m−1∑
k=0

yk
1(y2z)r2(y3z)k .

The lemma is proved. �
Furthermore, compute:

y4z = y−1
2

(
(y3z)r1 + 1

) = y−1
2 (y3z)r1 + y−1

2 = (
zy0 − y−1

2 (y1)
r1

)
(y3z)r1 + y−1

2

= zy0(y3z)r1 − y−1
2

(
yr1−1

1 (y1 y3z)(y3z)r1−1 − 1
) = zy0(y3z)r1 − y−1

2

(
yr1−1

1

(
1 + (y2z)r2

)
(y3z)r1−1 − 1

)
.

We have:

yr1−1
1

(
1 + (y2z)r2

)
(y3z)r1−1 − 1 = yr1−1

1 (y2z)r2(y3z)r1−1 + yr1−1
1 (y3z)r1−1 − 1.

Using Lemma 6 and taking into account that ym
1 y2 = y2(zy1)

m for m > 0, we obtain:

yr1−1
1

(
1 + (y2z)r2

)
(y3z)r1−1 − 1 = yr1−1

1 (y2z)r2(y3z)r1−1 +
r1−2∑
k=0

yk
1(y2z)r2(y3z)k =

r1−1∑
k=0

yk
1(y2z)r2(y3z)k

= y2

r1−1∑
k=0

(zy1)
kz(y2z)r2−1(y3z)k.

Therefore, y4z = zy0(y3z)r1 − ∑r1−1
k=0 (zy1)

k z(y2z)r2−1(y3z)k . This proves Proposition 5. �
Proposition 5 gives us the first inclusion (4). Prove second inclusion (4) now. We need the following obvious fact. Let σ

be the anti-automorphism of F2 given by: σ(y1) = y2, σ(y1) = y2 (so that σ(z) = z).

Lemma 7. σ(yk) = y3−k for k ∈ Z, in particular, σ(Ak(r1, r2)) = A−k(r2, r1) for k ∈ Z.

This immediately implies the second inclusion (4): y1−k ∈ A−k , k ∈ Z, and Theorem 4 is proved. �
Therefore, Theorem 3 is proved. �
And, ultimately, Conjecture 1 is proved.

Example 8. Let r1 = r2 = 2. We have: yk+1zyk−1 = y2
k + 1, yk−1 yk+1z = ykzyk z + 1 for all k ∈ Z. This implies:

y4z = y−1
2 (y3zy3z + 1) = (

zy0 − y−1
2 y2

1

)
y3(zy3z) + y−1

2

= zy0 y3zy3z − y−1
2

(
y1(y1 y3z)y3z − 1

)
.

Note that y1(y1 y3z)y3z − 1 = y1(y2zy2z + 1)y3z − 1 = y1 y2zy2zy3z + y1 y3z − 1 = y2zy1zy2zy3z + (y2z)2. Therefore,

y4z = zy0(y3z)2 − (zy1zy2zy3z + zy2z).

The noncommutative cluster algebra A = A(r1, r2) has a number symmetries in addition to the anti-involution σ :
A(r1, r2)→̃A(r2, r1) from Lemma 7: the translation yk �→ yk+1, k ∈ Z, defines an isomorphism τ : A(r1, r2)→̃A(r2, r1),
which is an automorphism when r1 = r2.

We conclude with a brief discussion of the presentation of A.

Proposition 9. The generators y0, y1, y2, y3, z±1 of A satisfy (for i = 0,1,2, j = 1,2):

yi yi+1 = yi+1zyi, y j+1zy j−1 = y
r j

j + 1,

y j−1 y j+1z = (y j z)
r j + 1, y3zy0 − zy0 y3z = yr2−1

2 yr1−1
1 − z(y1z)r1−1(y2z)r2−1.
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Proof. Only the last relation needs to be proved (the first three relations are (3), (2), and (5) respectively). Indeed, using
the available relations in F2, we obtain:

y0 y3z = ((
1 + (y1z)r1

)
z−1 y−1

2

)(
y−1

1

(
1 + (y2z)r2

))
= (

1 + (y1z)r1
)
z−1 y−1

1 z−1 y−1
2

(
1 + (y2z)r2

) = hr1(y1z)hr2(y2z),

where hr(y) = y−1 + yr−1. Similarly,

y3zy0 = ((
1 + yr2

2

)
y−1

1

)(
z−1 y−1

2

(
1 + yr1

1

)) = (
1 + yr2

2

)
y−1

2 y−1
1

(
1 + yr1

1

) = hr2(y2)hr1(y1).

Taking into account that y1 y2 y−1
1 = y2z and y−1

2 y1 y2 = zy1, we obtain:

y3zy0 = yr2−1
2 yr1−1

1 + hr2(y2)y−1
1 + y−1

2 yr1−1
1 + y−1

2 y−1
1

= yr2−1
2 yr1−1

1 + (zy1)
r1−1 y−1

2 + y−1
1 hr2(y2z) + y−1

1 z−1 y−1
2

= yr2−1
2 yr1−1

1 + z(y1z)r1−1(y2z)−1 + z(y1z)−1hr2(y2z) + z(y1z)−1(y2z)−1

= yr2−1
2 yr1−1

1 + z(y1z)r1−1(y2z)r2−1.

The proposition is proved. �
We expect that the relations in Proposition 9 are defining.
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