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In this Note we prove that the underlying almost complex structure to a non-Kähler almost
Hermitian structure admitting a compatible connection with skew-symmetric torsion
cannot be calibrated by a symplectic form even locally.
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r é s u m é

Dans cette Note on démontre que la structure presque complexe sous-jacente à une
structure presque hermitienne non kälérienne admettant une connexion compatible avec
une torsion antisymétrique ne peut pas, même localement, être calibrée par une forme
symplectique.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminaries

Let M be an even dimensional (smooth) manifold. An almost complex structure on M is an endomorphism of the tangent
bundle to M satisfying J 2 = −Id. Given an almost complex structure J we denote by N the associated Nijenhuis tensor

N(X, Y ) = [ J X, J Y ] − J [ J X, Y ] − J [X, J Y ] − [X, Y ] .
In view of the celebrated theorem of Newlander–Nirenberg (see [5]), N measures how J fails to be a genuine complex
structure. A symplectic form ω on M is called compatible with a given almost complex structure J if J preserves ω and the
tensor

g(·,·) := ω( J · , ·)
is a Riemannian metric on M . It is well known that any symplectic form ω admits a compatible almost complex structure.
The converse is far from being true even locally.

Using notation of [7], we consider the following:
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Definition 1.1. Let J be an almost complex structure on M and let p ∈ M . J satisfies the local symplectic property (l.s.p.) at p
if there exists a symplectic form ω defined in some neighborhood of p which is compatible with J . We say that J satisfies
the l.s.p. if it satisfies the l.s.p. everywhere. Finally, we say that J does not satisfy the l.s.p. if it does not satisfy the l.s.p. at
any point of M .

In dimension 4 any almost complex structure satisfies the local symplectic property (see [8] at pages 175–176 and [6]),
while in dimension greater than 4 things work differently. For instance, Bryant proved in [1] that the standard almost com-
plex structure on S6 does not satisfy the local symplectic property and Tomassini described in [9] some explicit examples of
almost complex structures on R

2n which do not satisfy the local symplectic property. Moreover, from [2,4], we have that the
almost complex structure associated to a 6-dimensional strictly nearly Kähler structure does not satisfy the local symplectic
property.

We recall that an almost Hermitian structure (g, J ) is called nearly Kähler if the covariant derivative of J with respect to
the Levi-Civita connection of g is a skew-symmetric tensor. If further the Nijenhuis tensor of J does not vanish everywhere,
then (g, J ) is called a strictly nearly Kähler structure. Nearly Kähler structures are naturally endowed by a Hermitian connec-
tion with skew-symmetric torsion. An affine connection ∇ on an almost Hermitian manifold (M, g, J ) is called Hermitian
with skew-symmetric torsion if ∇ preserves g, J and the tensor

α(X, Y , Z) := g
(
T (X, Y ), Z

)

is skew-symmetric, where T denotes the torsion of ∇ . The aim of this Note is to prove the following:

Theorem 1.2. Let (M, g, J ) be an almost Hermitian manifold admitting a Hermitian connection with skew-symmetric torsion. Let
p ∈ M such that N p �= 0. Then J does not satisfy the local symplectic property at p.

2. Proof of the result

Let (M, g, J ) be an almost Hermitian manifold. In view of a result of Friedrich and Ivanov (see [3]), (M, g, J ) admits a
Hermitian connection with skew-symmetric torsion if and only if

γ (X, Y , Z) := g
(
N(X, Y ), Z

)

is skew-symmetric, where N is the Nijenhuis tensor of J . The almost complex structure J induces the canonical splitting
T M ⊗ C = T 1,0M ⊕ T 0,1M . It is well known that

N(Zi, Zr) = [Zi, Zr]0,1 ∈ T 0,1M, N(Zi, Zr) = 0, (1)

for every Zi, Zr ∈ T 1,0M , where we set Zr = Zr . This yields the following:

Lemma 2.1. Let (g, J ) be an almost Hermitian structure, then

g
(
N(X, Y ), Z

) = g
(
N

(
X1,0, Y 1,0), Z 1,0) + g

(
N

(
X0,1, Y 0,1), Z 0,1)

for every X, Y , Z ∈ T M ⊗ C.

Lemma 2.1 implies that if γ is skew-symmetric, then its complex extension defines a (3,0)-form γ̃ on M , after identify-
ing T 1,0 M with T M .

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Since the result is local, we may assume that M is R
2n and that p = 0. Using (1) we get that the

(3,0)-form γ associated to (g, J ) can be written in terms of bracket as

γ (Z1, Z2, Z3) = g
([Z1, Z2], Z3

)

for Z1, Z2, Z3 ∈ T 1,0M . Assume that there exists a J -compatible symplectic form ω defined in some neighborhood U of
p and let h be the associated almost Kähler metric. We may assume that ω is the standard symplectic form on U . Let A
be a (constant) matrix such that hp(A·, A·) = gp(·,·). Then g′(·,·) = h(A·, A·) is a metric near p such that g′

p = gp . Now

g′ is compatible with the almost complex structure J ′ = A−1 J A and ω′ = g′( J ′ · , ·) is a non-degenerate 2-form. Since
the components of A are constant, ω′ is closed and the pair (g′, J ′) is an almost Kähler structure near p. Let {Zr} be
a (local) frame of type (1,0) with respect to J ′; then {A Zr} is a frame of type (1,0) with respect to J near p. Writing
A Zr = As

r Zs + Ak
r Z and using Lemma 2.1 we have at p
k
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γp(A Zr, A Zl, A Zi) = gp
(
Np(A Zr, A Zl), A Zi

)

= gp
(
Np

(
As

r Zs, At
l Zt

)
, Au

i Zu
) + gp

(
Np

(
Ad

r Zd, Ao
l Zo

)
, Aq

i Zq
)

= As
r At

l Au
i g′

p

([Zs, Zt]p, Zu
) + Ad

r Ao
l Aq

i g′
p

([Zd, Zo]p, Zq
)
,

i.e.

γp(A Zr, A Zl, A Zi) = As
r At

l Au
s γ

′
p(Zs, Zt , Zu) + Ad

r Ao
l Aq

i γ
′
p(Zd, Zo, Zq) (2)

where N ′ is the Nijenhuis tensor of J ′ and γ ′(X, Y , Z) = g′(N ′(X, Y ), Z). Since g′ is an almost Kähler metric, γ ′ satisfies

γ ′(X, Y , Z) + γ ′(Z , X, Y ) + γ ′(Y , Z , X) = 0.

Hence (2) implies that γ at p satisfies

γp(X, Y , Z) + γp(Z , X, Y ) + γp(Y , Z , X) = 0.

Since γp is skew-symmetric, this last equation readily implies N p = 0, which is a contradiction. �
Remark 2.2. Note that, as was just observed in dimension 6 in [4], the proof of the above theorem also shows that does
not exist a J -compatible almost Hermitian metric g′ defined in a neighborhood of p whose fundamental form ω satisfies
(dω)3,0 = 0.
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