

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Geometry

On almost complex structures which are not compatible with symplectic forms ${}^{\bigstar}$

Sur les structures presque complexes qui ne sont pas compatibles avec des formes symplectiques $\overset{\bigstar}{}$

Luigi Vezzoni

Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy

ARTICLE INFO	ABSTRACT
Article history: Received 22 April 2010 Accepted after revision 4 January 2011 Available online 4 March 2011	In this Note we prove that the underlying almost complex structure to a non-Kähler almost Hermitian structure admitting a compatible connection with skew-symmetric torsion cannot be calibrated by a symplectic form even locally. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Presented by Jean-Pierre Demailly	R É S U M É
	Dans cette Note on démontre que la structure presque complexe sous-jacente à une structure presque hermitienne non kälérienne admettant une connexion compatible avec une torsion antisymétrique ne peut pas, même localement, être calibrée par une forme symplectique.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminaries

Let *M* be an even dimensional (smooth) manifold. An almost complex structure on *M* is an endomorphism of the tangent bundle to *M* satisfying $J^2 = -\text{Id}$. Given an almost complex structure *J* we denote by *N* the associated Nijenhuis tensor

N(X, Y) = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y].

In view of the celebrated theorem of Newlander–Nirenberg (see [5]), *N* measures how *J* fails to be a genuine complex structure. A symplectic form ω on *M* is called *compatible* with a given almost complex structure *J* if *J* preserves ω and the tensor

$$g(\cdot, \cdot) := \omega(J \cdot, \cdot)$$

is a Riemannian metric on M. It is well known that any symplectic form ω admits a compatible almost complex structure. The converse is far from being true even locally.

Using notation of [7], we consider the following:

1631-073X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.01.002

This work was supported by the Project M.I.U.R. "Riemannian Metrics and Differentiable Manifolds" and by G.N.S.A.G.A. of I.N.d.A.M. E-mail address: luigi.vezzoni@unito.it.

Definition 1.1. Let *J* be an almost complex structure on *M* and let $p \in M$. *J* satisfies the *local symplectic property* (*l.s.p.*) at *p* if there exists a symplectic form ω defined in some neighborhood of *p* which is compatible with *J*. We say that *J* satisfies the *l.s.p.* if it satisfies the *l.s.p.* everywhere. Finally, we say that *J* does not satisfy the *l.s.p.* if it does not satisfy the *l.s.p.* at any point of *M*.

In dimension 4 any almost complex structure satisfies the local symplectic property (see [8] at pages 175–176 and [6]), while in dimension greater than 4 things work differently. For instance, Bryant proved in [1] that the standard almost complex structure on S^6 does not satisfy the local symplectic property and Tomassini described in [9] some explicit examples of almost complex structures on \mathbb{R}^{2n} which do not satisfy the local symplectic property. Moreover, from [2,4], we have that the almost complex structure associated to a 6-dimensional strictly nearly Kähler structure does not satisfy the local symplectic property.

We recall that an almost Hermitian structure (g, J) is called *nearly Kähler* if the covariant derivative of J with respect to the Levi-Civita connection of g is a skew-symmetric tensor. If further the Nijenhuis tensor of J does not vanish everywhere, then (g, J) is called a *strictly nearly Kähler structure*. Nearly Kähler structures are naturally endowed by a Hermitian connection with skew-symmetric torsion. An affine connection ∇ on an almost Hermitian manifold (M, g, J) is called *Hermitian with skew-symmetric torsion* if ∇ preserves g, J and the tensor

$$\alpha(X, Y, Z) := g(T(X, Y), Z)$$

is skew-symmetric, where T denotes the torsion of ∇ . The aim of this Note is to prove the following:

Theorem 1.2. Let (M, g, J) be an almost Hermitian manifold admitting a Hermitian connection with skew-symmetric torsion. Let $p \in M$ such that $N_p \neq 0$. Then J does not satisfy the local symplectic property at p.

2. Proof of the result

Let (M, g, J) be an almost Hermitian manifold. In view of a result of Friedrich and Ivanov (see [3]), (M, g, J) admits a Hermitian connection with skew-symmetric torsion if and only if

$$\gamma(X, Y, Z) := g(N(X, Y), Z)$$

is skew-symmetric, where N is the Nijenhuis tensor of J. The almost complex structure J induces the canonical splitting $TM \otimes \mathbb{C} = T^{1,0}M \oplus T^{0,1}M$. It is well known that

$$N(Z_i, Z_r) = [Z_i, Z_r]^{0,1} \in T^{0,1}M, \qquad N(Z_i, Z_{\bar{r}}) = 0,$$
(1)

for every $Z_i, Z_r \in T^{1,0}M$, where we set $\overline{Z}_r = Z_{\overline{r}}$. This yields the following:

Lemma 2.1. Let (g, J) be an almost Hermitian structure, then

$$g(N(X,Y),Z) = g(N(X^{1,0},Y^{1,0}),Z^{1,0}) + g(N(X^{0,1},Y^{0,1}),Z^{0,1})$$

for every $X, Y, Z \in TM \otimes \mathbb{C}$.

Lemma 2.1 implies that if γ is skew-symmetric, then its complex extension defines a (3, 0)-form $\tilde{\gamma}$ on M, after identifying $T^{1,0}M$ with TM.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Since the result is local, we may assume that *M* is \mathbb{R}^{2n} and that p = 0. Using (1) we get that the (3, 0)-form γ associated to (g, J) can be written in terms of bracket as

$$\gamma(Z_1, Z_2, Z_3) = g([Z_1, Z_2], Z_3)$$

for $Z_1, Z_2, Z_3 \in T^{1,0}M$. Assume that there exists a *J*-compatible symplectic form ω defined in some neighborhood *U* of *p* and let *h* be the associated almost Kähler metric. We may assume that ω is the standard symplectic form on *U*. Let *A* be a (constant) matrix such that $h_p(A, A) = g_p(\cdot, \cdot)$. Then $g'(\cdot, \cdot) = h(A \cdot, A \cdot)$ is a metric near *p* such that $g'_p = g_p$. Now *g'* is compatible with the almost complex structure $J' = A^{-1}JA$ and $\omega' = g'(J' \cdot, \cdot)$ is a non-degenerate 2-form. Since the components of *A* are constant, ω' is closed and the pair (g', J') is an almost Kähler structure near *p*. Let $\{Z_r\}$ be a (local) frame of type (1,0) with respect to *J'*; then $\{AZ_r\}$ is a frame of type (1,0) with respect to *J* near *p*. Writing $AZ_r = A_r^s Z_s + A_r^k Z_k$ and using Lemma 2.1 we have at *p*

$$\begin{split} \gamma_p(AZ_r, AZ_l, AZ_i) &= g_p \big(N_p(AZ_r, AZ_l), AZ_i \big) \\ &= g_p \big(N_p \big(A_r^s Z_s, A_l^t Z_l \big), A_i^u Z_u \big) + g_p \big(N_p \big(A_r^{\bar{d}} Z_{\bar{d}}, A_l^{\bar{o}} Z_{\bar{o}} \big), A_i^{\bar{q}} Z_{\bar{q}} \big) \\ &= A_r^s A_l^t A_i^u g_p' \big([Z_s, Z_t]_p, Z_u \big) + A_r^{\bar{d}} A_l^{\bar{o}} A_i^{\bar{q}} g_p' \big([Z_{\bar{d}}, Z_{\bar{o}}]_p, Z_{\bar{q}} \big), \end{split}$$

i.e.

$$\gamma_p(AZ_r, AZ_l, AZ_i) = A_r^s A_l^t A_s^u \gamma_p'(Z_s, Z_t, Z_u) + A_r^{\bar{d}} A_l^{\bar{o}} A_i^{\bar{q}} \gamma_p'(Z_{\bar{d}}, Z_{\bar{o}}, Z_{\bar{q}})$$
(2)

where N' is the Nijenhuis tensor of J' and $\gamma'(X, Y, Z) = g'(N'(X, Y), Z)$. Since g' is an almost Kähler metric, γ' satisfies

$$\gamma'(X, Y, Z) + \gamma'(Z, X, Y) + \gamma'(Y, Z, X) = 0.$$

Hence (2) implies that γ at p satisfies

$$\gamma_p(X, Y, Z) + \gamma_p(Z, X, Y) + \gamma_p(Y, Z, X) = 0.$$

Since γ_p is skew-symmetric, this last equation readily implies $N_p = 0$, which is a contradiction. \Box

Remark 2.2. Note that, as was just observed in dimension 6 in [4], the proof of the above theorem also shows that does not exist a *J*-compatible almost Hermitian metric g' defined in a neighborhood of p whose fundamental form ω satisfies $(d\omega)^{3,0} = 0$.

References

[1] R.L. Bryant, On the geometry of almost complex 6-manifolds, Asian J. Math. 10 (3) (2006) 561-605.

[2] R.L. Bryant, Submanifolds and special structures on the octonions, J. Differential Geom. 17 (2) (1982) 185-232.

[3] Th. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002) 303-335.

[4] M. Lejmi, Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms, C. R. Acad. Sci. Paris, Ser. I 343 (11-12) (2006) 759-762.

[5] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. Math. (2) 65 (1957) 391-404.

[6] T. Rivière, G. Tian, The singular set of J-holomorphic maps into projective algebraic varieties, J. Reine Angew. Math. 570 (2004) 47-87.

[7] T. Rivière, G. Tian, The singular set of 1-1 integral currents, Ann. Math. (2) 169 (3) (2009) 741-794.

[8] J.-C. Sikorav, in: F. Audin, et al. (Eds.), Holomorphic Curves in Symplectic Geometry, in: Progress in Math., vol. 117, Birkhäuser, 1994.

[9] A. Tomassini, Some examples of non calibrable almost complex structures, Forum Math. 14 (2002) 869-876.