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We consider a class of elliptic PDEs on closed surfaces with exponential nonlinearities and
Dirac deltas on the right-hand side. The study arises from abelian Chern–Simons theory in
self-dual regime, or from the problem of prescribing the Gaussian curvature in presence of
conical singularities. A general existence result is proved using global variational methods:
the analytic problem is reduced to a topological problem concerning the contractibility of a
model space, the so-called space of formal barycenters, characterizing the very low sublevels
of a suitable functional.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons une classe d’EDP elliptiques sur une surface compacte et sans bord, avec
une nonlinéarité exponentielle et des masses de Dirac dans le membre de droite. Ce travail
est motivé par l’étude d’équations de Chern–Simons abéliennes en régime auto-dual, ainsi
que par le problème de la courbure gaussienne prescrite pour des surfaces avec singularités
coniques. Nous démontrons un résultat général d’existence en utilisant des méthodes
variationnels globales : le problème analytique est réduit à un problème topologique
concernant la contractilité d’un espace modèle, l’espace des barycentres formels, qui
caractérise les sous-niveaux très bas d’une fonctionnelle appropriée.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans ce travail nous étudions l’équation

−�g u = ρ

(
h(x)e2u∫

Σ
h(x)e2u dV g

− 1

)
− 2π

m∑
i=1

α j(δp j − 1)

sur une surface compacte (Σ, g). ρ est un paramètre positif et h : Σ → R est une fonction positive et régulière. Les p j sont
des points dans Σ et les a j sont des nombres réels. L’étude de l’équation précedénte est motivée par la théorie des équations
de Chern–Simons abéliennes en régime auto-dual ainsi si que par le problème de la courbure gaussienne prescrite pour des
surface avec singularités coniques. En utilisant des inégalités du type Moser–Trudinger et des fonctions-test appropriées, le
problème est réduit à l’étude de la topologie d’un ensemble approprié. Cet ensemble coïncide avec les barycentres formels
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sur la surface, où les multiplicités sont liées à des poids appropriés aux points p j . Si cet ensemble est contractile nous
pouvons démontrer l’existence de solutions sous des hypothèses génériques pour ρ .

1. Introduction

This article deals with the study of a class of equations having the form

−�g u = ρ

(
h(x)e2u∫

Σ
h(x)e2u dV g

− 1

)
− 2π

m∑
i=1

α j(δp j − 1) (1)

on a Riemannian 2-manifold (Σ, g). Here ρ is a positive parameter, h : Σ → R a smooth positive function, the α j ’s are real
numbers, p j ∈ Σ are some fixed points and the subscripts (·)g refer to the metric g .

This equation arises in different contexts and has therefore been object of intense study in the last decades. First of all,
it naturally appears in the study of multivortices in the Electroweak Theory by Glashow–Salam–Weinberg [18], where u
can be interpreted as the logarithm of the absolute value of the wave function and the points p j ’s are the vortices, where
the wave function vanishes. Secondly, this class of equations has proved to be relevant in many other physical frames, such
as the study of the statistical mechanics of point vortices in the mean field limit [17,6,7] and the abelian Chern–Simons
Theory, as discussed in [15,25]. Eq. (1) also admits a geometric interpretation, which is however much more evident if we
restrict our attention to the regular case

−�g u = ρ

(
h(x)e2u∫

Σ
h(x)e2u dV g

− 1

)
. (2)

Indeed, if we consider a conformal change of metric of our manifold, say ĝ = e2w g, the Gaussian curvature transforms
according to the law

K ĝ = e−2w(−�g w + K g), (3)

and so, if K g is constant, the problem of asking whether g can be conformal to a metric with Gaussian curvature a given
function K ĝ is equivalent to (2). This is the famous Kazdan–Warner problem [16], also known as Nirenberg problem in the
special case when (Σ, g) is just the standard sphere. While moving from Problem (2) to Problem (1), the extra terms can be
viewed as singularities in the Gauss curvature corresponding to a local conical structure, as can be justified via an extension
of the Gauss–Bonnet formula (see [26]). With a non-constant function h(x), we are considering the problem of prescribing
the Gaussian curvature through conformal metrics. This is a question dual to the uniformization problem, where on general
surfaces one looks for metrics with constant Gaussian curvature (in higher dimension this is the Yamabe problem, see the
survey [19]).

Mainly due to its natural geometric appeal, Eq. (2) has been widely studied in the last forty years. Because of its strong
nonlinearity, it has been tackled by means of two classes of techniques both leading to quite sophisticated results: on the
one hand, topological methods relying on the degree theory by Leray–Schauder (see [9,10,20], and also [11] for the singular
case), on the other purely variational methods based on an improvement of the Moser–Trudinger inequality. Indeed (2) is
the Euler–Lagrange equation associated to the C1 functional

Jρ(u) =
∫
Σ

|∇g u|2 dV g + 2ρ

∫
Σ

u dV g − ρ log
∫
Σ

h(x)e2u dV g,

defined on the Sobolev space H1(Σ, g). The weak form of the Moser–Trudinger inequality

log
∫
Σ

e2(u−u) dV g � 1

4π

∫
Σ

|∇g u|2 dV g + CΣ,g u ∈ H1(Σ, g) (4)

guarantees that Jρ is well-defined on H1(Σ, g) for any value of ρ ∈ R. Moreover, Jρ is lower semi-continuous with respect
to the weak topology of that space and so, since (4) gives coercivity of Jρ if ρ < 4π, we immediately get existence of
critical points for this range of values and the corresponding solvability of (2). It is clear that such critical points are global
minima for Jρ. Such a direct variational approach does not apply to the case ρ � 4π as can be seen by exhibiting explicit
examples (i.e. standard bubbling functions). This is the reason why more sophisticated tools are needed in this regime. Such
a variational structure can be recovered for the singular problem by performing a change of variables like

u �→ u +
m∑

j=1

α j log dg(x, p j) (5)

so that our singular equation can be rewritten as
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−�g u + ρ = ρ
h̃(x)e2u∫

Σ
h̃(x)e2u dV g

on Σ, (6)

where h̃ � 0 and h̃(x) � dg(x, p j)
2α j near p j . To do this formally, consider for j ∈ {1, . . . ,m} the Green functions G p j ∈ D′(Σ)

defined by the problem �g G p j = 2π(δp j − 1): it is a standard fact [1] that such distributions exist and moreover that
they are actually smooth away from the singularity, that is G p j ∈ C∞(Σ \ p j), j ∈ {1, . . . ,m}. Hence, by performing the

substitution ũ := u − ∑m
j=1 α j G p j we really get Eq. (6) for ũ with the modified datum h̃(x) = h(x)e2

∑m
j=1 α j G p j . Due to the

asymptotics of G p j , so to the fact that G p j � log dg(x, p j) near p j , we also find that h̃ � dg(x, p j)
2α j near each p j, as

previously requested. Notice also that, as a result, (6) is nothing but the Euler–Lagrange equation for modified functional

Jρ,α(u) =
∫
Σ

|∇g u|2 dV g + 2ρ

∫
Σ

u dV g − ρ log
∫
Σ

h̃(x)e2u dV g, u ∈ H1(Σ, g) (7)

(where α = (α1, . . . ,αm) ∈ N
m) and so we can study existence questions by global variational methods. Similar in spirit to

(4) is the following Troyanov inequality (see [26]), valid for α > −1 and p ∈ Σ :

log
∫
Σ

dg(x, p)2αe2(u−u) dV g � 1

4π min{1,1 + α}
∫
Σ

|∇g u|2 dV g + Cα,Σ,g, u ∈ H1(Σ, g) (8)

that guarantees coercivity of Jρ,α for ρ < 4π min j=1,...,m(1 +α j). Again, it is seen by definition of suitable singular bubbling
functions that this value is sharp and so the topology of low sublevels of the functionals needs to be studied with refined
strategies.

2. Improved inequalities and statement of the main result

The core of the variational approach to Problem (2) is represented by an improvement of the Moser–Trudinger inequality
first obtained by Chen and Li in [12]: the constant 1/(4π) can be improved whenever u is in some sense concentrated in
well-separated regions on Σ .

Lemma 1. Let l be a positive integer, let Ω1, . . . ,Ωl+1 be disjoint subsets of Σ satisfying a separation condition dist(Ωi,Ω j) > δ0 for
any i 	= j and some δ0 > 0 and consider any γ0 ∈ (0, 1

l+1 ). Then, for any ε̃ > 0, there exists a constant C := C(Σ, g, l, δ0, γ0, ε̃) such
that

log
∫
Σ

e2(u−u) dV g � 1

4(l + 1)π − ε̃

∫
Σ

|∇g u|2 dV g + C, (9)

for all functions u ∈ H1(Σ) satisfying∫
Ωi

e2u dV g∫
Σ

e2u dV g
� γ0, ∀i ∈ {1, . . . , l + 1}. (10)

This result gives important information on the structure of sublevels of Jρ or, more precisely, on the concentration
phenomena characterizing the functions belonging to sufficiently low sublevels. Thanks to a sort of covering argument
presented in [14] it is possible to show that if for instance ρ ∈ (4π,8π) and u belongs to a sufficiently low sublevel of Jρ ,
then it has to be conformally concentrated on a single region, and this is precisely what happens for the bubbling functions.
This is the general case:

Proposition 1. Assume ρ ∈ (4kπ,4(k + 1)π) for some k � 1. Then, for any ε > 0 and r > 0 there exists a sufficiently large positive
constant L := L(ε, r) such that for every u ∈ H1(Σ, g) with Jρ(u) � −L there are k points on Σ (say p1,u, . . . , pk,u) so that∫

Σ\⋃k
i=1 Br(pi,u)

e2u dV g∫
Σ

e2u dV g
< ε. (11)

By some hard work, this leads to the definition of a projection operator from the very low sublevels of Jρ (say J−L
ρ ,

L � 1) to the space of formal barycenters

Σk :=
{

k∑
tiδpi :

k∑
ti = 1, ti � 0, pi ∈ Σ ∀i ∈ {1, . . . ,k}

}
(12)
i=1 i=1
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and indeed this is proved to be a homotopy equivalence (see [14] and [22]). As a consequence, the non-contractibility of
J−L
ρ (for L big enough) is proved by studying the homology of the model space Σk .

The first step of our study was then a similar improved inequality that is based on both (4) and (8) and is proved by
means of cut-off functions and a suitable spectral decomposition.

Lemma 2. Let n ∈ N and let I ⊆ {1, . . . ,m} with n + card(I) > 0, where card(I) denotes the cardinality of a set. Assume there exists
r > 0, δ0 > 0 and pairwise distinct points {q1, . . . ,qn} ⊆ Σ \ {p1, . . . , pm} such that:

• For any couple {a,b} ⊆ {q1, . . . ,qn ∪ (
⋃

i∈I pi)} with a 	= b one has distg(Br(a), Br(b)) � δ0;
• for any a ∈ {q1, . . . ,qm} one has distg(pi, Br(a)) � δ0 for any i ∈ {1, . . . ,m} \ I;

and consider any γ0 ∈ (0, 1
n+card(I) ).

Then, for any ε̃ > 0 there exists a constant C := C(Σ, g,n, I, r, δ0, γ0, ε̃) such that

log
∫
Σ

h̃e2(u−u) dV g � 1

4π(n + ∑
i∈I (1 + αi) − ε̃)

∫
Σ

|∇g u|2 dV g + C, (13)

for all functions u ∈ H1(Σ) satisfying∫
Br(a)

h̃e2u dV g∫
Σ

h̃e2u dV g

� γ0, ∀a ∈
{

q1, . . . ,qn ∪
(⋃

i∈I

pi

)}
. (14)

Following the guide of the regular case, we are then led to claim the structure of the very low sublevels of the functional
Jρ,α .

Definition 1. Given a point q ∈ Σ we define its weighted cardinality as follows:

χ(q) =
{

1 + α j if q = p j for some j = 1, . . . ,m;
1 otherwise.

The cardinality of any finite set of (pairwise distinct) points on Σ is obtained extending χ by additivity.

This enables us to easily describe selection rules to determine admissibility conditions for specific barycentric configura-
tions in dependence on the values of the α j ’s and ρ.

Definition 2. Suppose all the parameters ρ,α1, . . . ,αm are fixed. We define the corresponding space of formal barycenters
as follows

Σρ,α =
{∑

q j∈ J

t jδq j :
∑
q j∈ J

t j = 1, t j � 0, q j ∈ Σ πχ( J ) < ρ

}
. (15)

We expect that Σρ,α is homotopy equivalent to the very low sublevels of the functional Jρ,α : we are indeed able to
define a non-trivial projection operator Π : J−L

ρ,α → Σρ,α (for some appropriate choice of L) and an immersion Φ : Σρ,α →
J−L
ρ,α so that the composition Π · Φ : Σρ,α ←↩ is (homotopy) equivalent to the identity on the same space. Although this

fact does not imply the homotopic equivalence, it is however sufficient for our purposes. For the sake of clarity, assume
from now onwards that the parameter L is fixed so that Π may be defined and the gauge of Φ (which is, to be precise,
a one-parameter family of immersion operators Φλ,λ ∈ R>0) is fixed so that Φ = Φ

λ̂
takes values in J−2L

ρ,α . Moreover, let us
write ϕσ instead of Φ(σ ) for σ ∈ Σρ,α .

Remark 1.

• The definition of the immersion Φ was first done in [23] and, naively, associates to a given measure of Σρ,α a cor-
responding generalized multipole bubbling functions. This is a delicate point because some sort of smart interpolation
between the regular and the singular bubbling functions is needed.

• In order to define such Π we follow the line of [14] but need to deal with the very sophisticated topological structure
of Σρ,α as a stratified set.

These are the tools we need to prove our main result, which is essentially an existence theorem for non-critical values
of ρ (depending on α), see the denominators in (13).
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Definition 3. We say that ρ ∈ R>0 is a singular value for Problem (1) if it is representable as follows:

ρ = 4πn + 4π
∑
i∈I

(1 + αi) (16)

for some n ∈ N and I ⊆ {1, . . . ,m} (possibly empty) satisfying n + card(I) > 0. The set of singular values will be denoted by
S = S(α).

Theorem 1. Suppose that the parameters α ∈ (−1,0)m and ρ ∈ R>0 \S are such that the set Σρ,α is not contractible with respect to
the topology of C1(Σ, g)∗ . Then Problem (1) admits a solution u ∈ H1(Σ, g). Moreover, we have that u = v + ∑m

j=1 α j G p j with G p·
the Green functions defined above and v ∈ Cγ (Σ, g) for any γ ∈ [0, γ0) with γ0 ∈ (0,1) solving Eq. (6).

3. Outline of the proof

Our plan is to use a general min–max scheme in the form of a suitable topological cone construction.

1. Minimax scheme. We define the topological cone over Σρ,α as follows:

Θρ,α = (
Σρ,α × [0,1])/(

Σρ,α × {1}), (17)

where we are identifying all the points in Σρ,α × {1}. Consequently, we consider the family of continuous maps

Hρ,α = {
h : Θρ,α → H1(Σ, g): h(σ ) = ϕσ for every σ ∈ Σρ,α

}
, (18)

and then the number

Hρ,α = inf
h∈H

sup
σ∈Θ

Jρ,α

(
h(σ )

)
. (19)

We claim that under the assumption of Theorem 1 one has Hρ,α � −L. It is worth proving first that the class Hρ,α is
not empty. To this aim, notice that the map h(σ , t) = (1 − t)ϕσ , (σ , t) ∈ Σρ,α belongs to Hρ,α .

Concerning the lower bound on the min–max value, we just need to argue by contradiction. If Hρ α < −L, then there
should be a map h such that its image h(Θρ,α) (which is a topological cone in H1(Σ, g)) would be in J−L

ρ,α. As a
consequence, the composite map

t → Π
(
h(σ , t)

)
, σ ∈ Σρ,α (20)

would be a homotopy equivalence between Π(h(0, σ )) = Π · Φ(σ ) and a constant map. On the other hand, we know
that the function Π · Φ(σ ) is homotopic to the identity in Σρ,α and hence, by composition the space Σρ,α would be
contractible, a contradiction. Hence we deduce Hρ α � −L.

2. Existence on a dense set. We then show that the scheme outlined in the previous step leads to existence for a dense
set of ρ ’s (in a suitable neighborhood of a fixed value). This relies on a monotonicity trick by Struwe [24] and exploited
also in [13].

3. Conclusion via blow-up analysis. To conclude, we need to build a sequence of solutions for approximating values of ρ
and extract a converging sub-sequence via blow-up analysis. This may be done thanks to the results in [4], generalized
in [3] specifically for the case of negative parameters, and extending previous estimates in [5,21,20].

4. Final remark

Theorem 1 reduces an analytic problem (existence for (1)) to a topological problem (contractibility of Σρ,α). As a result,
we would hope such a space to be non-contractible for generic values of the parameters ρ and α. Indeed, this seems to be
true. More precisely, we conjecture that the cases of contractibility of Σρ,α can be classified so that, very surprisingly, such
topological question may be reduced to test a simple algebraic relation involving ρ and α. An outline of our conjecture
would first require a description of the stratifies structure of Σρ,α and is for brevity postponed to another work. It would
be also interesting to find some general connection with the topological argument developed in [2].

Full details about the proof of Theorem 1 are contained in the forthcoming paper [8].
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