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In a recent work, the authors have used Bertrand’s postulate to give a partial answer to
the conjecture of Mező which says that the hyperharmonic numbers – iterations of partial
sums of harmonic numbers – are not integers. In this Note, using small intervals containing
prime numbers, we prove that a great class of hyperharmonic numbers are not integers.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans un travail antérieur, les auteurs ont utilisé le postulat de Bertrand pour répondre,
partiellement, à la conjecture de Mező selon laquelle les nombres hyperharmoniques –
itérations de sommes partielles de nombres harmoniques – ne sont pas des entiers. Dans
cette Note, nous montrons qu’une grande classe de nombres hyperharmoniques ne sont
pas des entiers en utilisant les petits intervalles contenant des nombres premiers.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In 1915, Taeisinger proved that the harmonic number Hn := 1 + 1
2 + · · · + 1

n , except H1, is never an integer (see [10]).
In [3, pp. 258–259], Conway and Guy introduced, for a positive integer r, the hyperharmonic numbers by the inductive
relation:

H (1)
n := Hn and H (r)

n =
n∑

k=1

H (r−1)

k (r > 1),

where H(r)
n is called the nth hyperharmonic number of order r, this number can also be expressed in terms of binomial

coefficients as follows, see [3],

H (r)
n =

(
n + r − 1

r − 1

)
(Hn+r−1 − Hr−1). (1)
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I. Mező, in [7], proved that H(r)
n , for r = 2 and 3, except in case H(r)

1 , is never an integer. In his proof, I. Mező used the

reduction modulo the prime number 2. For n � 2, he conjectured that H (r)
n is never an integer for r � 4. The authors, in

[1], gave an answer to this conjecture in case r = 2,3 and 4, and for any r > 4 when the integers n + 1,n + 2, . . . ,n + r − 4
are not primes. The principal tool used in the proof was Bertrand’s postulate which was conjectured in 1845, and assures
the existence of a prime number in the interval ]n,2n − 2[ when n � 4. This conjecture, proved by Chebyshev in 1852,
lead to much interest from many mathematicians, their interest was about finding the smallest intervals containing a prime
number. More general results, see for example [9,5,8,2], have been proved, others conjectured (essentially using the Riemann
hypothesis). In this work, we use some of these results to prove that another class of hyperharmonic numbers are not
integers.

This new approach which is about reducing the interval in a multiplicative way, i.e. considering intervals of the form
]x, sx], leads us to better results than those we got in our preceding paper [1]. In Section 2, we give the main result
establishing the non-integerness of hyperharmonic numbers for a large class of n and r. Section 3 is devoted to use results
that give effective bounds of intervals that contain prime numbers, this allows us to establish the non-integerness of the
hyperharmonic numbers H(r)

n when 5 � r � 25.

2. Main result

The basic result of this section is a direct consequence of G. Giordano’s theorem, see [4, Theorem 1]:

Theorem 2.1. Let s ∈ ]1,2], then there exists a real number x0 such that for any x > x0 , the interval ]x, sx] contains at least one prime
number.

In his proof, G. Giordano gave explicitly x0. Here:

x0 = max

(
e22,

1

s
exp

(−b + 2
√

b2 − 4ac
)
/2a

)
,

where a = 1 − 1
s , b = −(1 − 1

s ) ln s − 0.008(1 + 1
s ) and c = 0.008 ln s.

Now, here is our main result:

Theorem 2.2. For any s ∈ ]1,2[, there is a prime number P0 such that for any integers r and n with 5 � r � (2 − s)P0 + 2 and n � P0 ,
the hyperharmonic number H (r)

n is never an integer.

Proof. Let s ∈ ]1,2[, by Theorem 2.1, there is x0 such that for any x > x0 there exists a prime number Q verifying x < Q �
sx. Denote by P0 the smallest prime number strictly greater than x0. Let r,n be such that 5 � r � (2 − s)P0 + 2 and n � P0,
and assume H(r)

n ∈ N. We have

H (r)
n = (n + 1)(n + 2) · · · (n + r − 1)

(r − 1)!
(

1

r
+ 1

r + 1
+ · · · + 1

r + n − 1

)

= (n + 1)(n + 2) · · · (n + r − 1)

(r − 1)!
(

Hn + 1

n + 1
+ 1

n + 2
+ · · · + 1

n + r − 1
− Hr−1

)
.

Put

Er,n := (r − 1)!H (r)
n + (r − 1)!

(
n + r − 1

r − 1

)
Hr−1 − (n + 1)(n + 2) · · · (n + r − 1)(Hn+r−1 − Hn).

Therefore

Er,n = (n + 1)(n + 2) · · · (n + r − 1)

(
1 + 1

2
+ · · · + 1

n

)
.

Since H(r)
n is integral, Er,n also is. Let P be the greatest prime � n, then P � P0 and multiplying the last equality by n!

P we
get:

n!
P

Er,n = (n + r − 1)!
P

(
1 + · · · + 1

P
+ · · · + 1

n

)
.

Hence

n!
Er,n − (n + r − 1)!(

1 + 1 + · · · + 1 + 1 + · · · + 1
)

= (n + r − 1)!
2

.

P P 2 P − 1 P + 1 n P



R. Aït Amrane, H. Belbachir / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 115–117 117
The left-hand side of the equality is an integer. Assume that the right-hand side of the equality is an integer, then P must
divides one of the factors (n + 1), (n + 2), . . . , (n + r − 1), hence there exists an integer j such that 1 � j � r − 1 and
n + j = 2P (more precisely j � 4). By the hypothesis we have

r � (2 − s)P0 + 2 ⇒ j � r − 1 � (2 − s)P0 + 1 � (2 − s)P + 1

⇒ sP � 2P − j + 1 = n + 1

⇒ sP � n + 1

hence the existence of a prime Q such that x0 < P < Q � sP < n + 1, and this contradicts the fact that P is the greatest
integer less than or equal to n. �
3. Effective bounds

Observe that the real number x0 given in Theorem 2.1 is very large, a thing which explains the particular use of results
that give effective bounds of intervals that contain prime numbers.

The basic result for this section is the following theorem (see [6]):

Theorem 3.1. For any integer n � 25, there is a prime number Q such that n < Q < (1 + 1
5 )n.

We deduce the following first result:

Theorem 3.2. The hyperharmonic number H(r)
n , n � 2 and 5 � r � 25, is not an integer.

Proof. For n = 2,3 and 4, see [1].
For 5 � r � 25 and n � 28, a computation with Maple allows to check that H (r)

n is not an integer.
For 5 � r � 25 and n � 29, use Theorem 2.2 with s = 6

5 and P0 = 29. �
The same procedure allows to prove the following theorem:

Theorem 3.3.

(i) The hyperharmonic number H(r)
n is not integral when r, n are integers such that 5 � r � 2.010.761 and n � 2.010.881.

(ii) The hyperharmonic number H(r)
n is not integral for any integers r, n such that 5 � r � 10.726.904.664 and n � 10.726.905.041.

Proof. The results in this theorem use the following:

(i) For any n � 2.010.760, there is a prime Q such that n < Q < (1 + 1
16597 )n, see [9, Theorem 12].

(ii) For any n � 10.726.905.041, there is a prime number Q such that n < Q � (1 + 1
28.313.999 )n, see [8, Theorem 3]. �

Remark 1. In the same context, we can use the table given in [8, p. 11] to show that another infinity of hyperharmonic
numbers are not integers.

Remark 2. It appears that we can obtain a remarkable improvement using explicit bounds assuming the Riemann Hypothe-
sis. For example, Theorem 1 of [8] says that for x � 2 the interval ]x − 8

5

√
x log x, x] contains a prime number.
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