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A simple test is proposed for examining the correctness of a given completely specified
response function against unspecified general alternatives in the context of univariate
regression. The usual diagnostic tools based on residual plots are useful but heuristic. We
introduce a formal statistical test supplementing the graphical analysis. Technically, the test
statistic is the maximum length of the sequences of ordered (with respect to the covariate)
observations that are consecutively overestimated or underestimated by the candidate
regression function. Note that the testing procedure can cope with heteroscedastic errors
and no replicates. Recursive formulae allowing one to calculate the exact distribution of
the test statistic under the null hypothesis and under a class of alternative hypotheses are
given.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans le cadre de la régression univariée, nous proposons un outil nonparamétrique général
permettant de tester si une fonction connue m est un bon candidat pour la fonction
de régression au vu des données. Ce test est basé sur la longueur maximale des suites
ordonnées (par rapport à la covariable) des résidus de même signe. Aucune hypothèse
n’est faite sur l’homoscédasticité des erreurs. De plus, ce test ne nécessite pas la présence
de données répétées. Nous donnons ici la loi de la statistique test sous l’hypothèse nulle
que la fonction considérée m est la vraie fonction de régression ainsi que sous une certaine
classe d’hypothèses alternatives.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Regression is one of the most widely used statistical tools to examine how one variable is related to another. Statisticians
usually begin their work by proposing a model for their observations. Then, they have to check on whether this model is
correct. The graphical analysis of the residuals is an important step of this process since the detection of a systematic pattern
would indicate a misspecified model. Unfortunately, this procedure is heuristic and could lead to errors of interpretation
since it is often difficult to determine whether the observed pattern reflects model misspecification or random fluctuations.
So it is of interest to complement such an analysis by a formal test. A large literature in this area can be found in Hart [4].
A review of statistical tests and procedures to determine lack of fit associated with the deterministic portion of a proposed
linear regression model is presented in Neill and Johnson [7]. We propose a new approach based on maximum length of
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sequences of consecutive overestimated (or underestimated) observations by the model. This test can be computed visually
if the sample size is small enough and it is a modification of a nonrandomness test (see Bradley [1, Chap. 11]). In other
words, we use it to detect whether residuals are randomly distributed or not.

In Section 2, the length of the longest run test is presented. Section 3 is devoted to the law of the test statistic under
the null hypothesis. In Section 4, the power of the test for a class of fixed alternatives is given.

2. The length of the longest run test statistic

Consider a collection of n random variables Yi generated as Yi = m0(xi) + εi , i = 1, . . . ,n, where the xi are fixed design
points and m0 is the true regression function. Moreover, the εi are independent and centred random variables such that:

∀i = 1, . . . ,n, Pr(εi > 0) = Pr(εi < 0) = 1

2
. (1)

Note that no hypothesis is made on the regularity of the function m0 or on the fact that errors must be identically distributed or
homoscedastic, and that normality of εi implies Condition (1). Moreover, contrary to other classical tests (like the F-test), no replicates
are needed to compute our test statistic.

We address the problem of testing the null hypothesis H0: m0 = m vs. H1: m0 �= m, where m is a completely specified
function.

The i-th residual, ε̂i , may be seen as substitute for the realisation of the random variable εi , thus comprising clues
for adequacy or inadequacy of the model assumptions related to the distribution of εi . Some classical lack-of-fit test
statistics are based on squared residuals, hence their signs are neglected, and we can expect to loose some informa-
tion. We propose a test statistic that takes these signs into account. This test statistic, Ln , is the maximum length of
the sequences of ordered (with respect to the covariate) observations that are consecutively overestimated (or under-
estimated) by the candidate m. Formally, we define Zi := 1{ε̂i>0} , 1 � i � n, S0 := 0, Sl := Z1 + · · · + Zl , and put for
0 � K � n, I+(n, K ) := max0�l�n−K (Sl+K − Sl). Let L+

n be the largest integer K for which I+(n, K ) = K . L+
n is the length

of the longest run of 1’s in Z1, . . . , Zn , i.e. the length of the longest run of positive residuals. By analogy, we define L−
n

as the length of the longest run of 0’s in Z1, . . . , Zn , that is L−
n is the largest integer K for which I−(n, K ) = K , where

I−(n, K ) := max0�l�n−K (K − Sl+K + Sl). Clearly, L−
n is the length of the longest run of negative residuals. Finally, we define

Ln := max(L+
n , L−

n ).

For a fixed nominal level α > 0, we obtain the following unilateral rejection regions Wn,α = {Ln > cn,α}, where cn,α is the
largest integer such that Pr(Ln > cn,α) � α. The corresponding bilateral rejection regions are W b

n,α = {Ln /∈ [cn,1−α/2, cn,α/2]}.

3. Distribution of Ln under the null hypothesis

If m is equal to m0, then, the residuals ε̂i are the true errors εi . Since Condition (1) holds, we can apply the following
recursive formula (Riordan [8, p. 153, Problem 13]): for all 1 < k < n,

(n − 1)!Pr(Ln = k) = 2(n − 2)!Pr(Ln−1 = k) − (n − k − 2)!Pr(Ln−k−1 = k)

+ (n − 2)!Pr(Ln−1 = k − 1) − 2(n − 3)!Pr(Ln−2 = k − 1) + (n − k − 1)!Pr(Ln−k = k − 1).

By using Pr(L2 = 2) = 1/2 and ∀n > 0, Pr(Ln = 1) = Pr(Ln = n) = 1/2n−1, the entire exact distribution of Ln and critical
values for every nominal level can be deduced from the above formula.

For most of practical cases of interest, m is estimated. For example, if m is estimated by OLS, an unfortunate property of
residuals is that they are autocorrelated even when the true errors are white noise. This divergence from the assumptions
disappears in large samples, but may be a problem when performing diagnostic tests in small samples. One way of handling
this problem is to transform the OLS residuals so that they do satisfy the LS assumptions when these are correct. One of the
most common of these transformations are the so-called recursive residuals (see Kianifard and Swallow [5] among others).
Another possibility is to estimate m on a subset of the data and to test it on the rest of the data.

In a coin tossing experiment, Ln , L+
n , and L−

n can be seen as the length of the longest run of heads or tails, heads and
tails, respectively. The length of the longest head run in a coin tossing experiment was investigated in the early days of
probability theory. Later, Deheuvels [2] gives upper and lower bounds for L+

n for a biased coin.
Schilling [9] discusses the distributions of Ln for unbiased coins, and remarks that for n tosses of a fair coin the length

of the longest run of heads or tails, statistically speaking, tends to be about one longer than the length of the longest run of
heads only. For a biased coin, when n is very large, if head is more likely than tail, the distribution function of L+

n is well
approximated by an extreme value distribution (see Gordon et al. [3]).

4. Distribution of Ln under fixed alternative hypotheses

In this section, we give the distribution of the length of the longest run test statistic under some fixed alternative
hypotheses. First of all, we suppose that Condition (1) is fulfilled, and that errors are identically distributed. Moreover, if we
test

H0: ∀x, m0(x) = m(x) vs. H1,c: ∀x, m0(x) = m(x) + c, c �= 0,



J.-B. Aubin, S. Leoni-Aubin / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 215–217 217
then, under H1,c , the probability for an observation to be underestimated (respectively, overestimated), p(c) �= 1
2 , is constant

for all the observations. By considering the total number of positive residuals, k, in the sequence, the cumulative distribution
of Ln can be expressed as:

P (Ln � x) =
n∑

k=0

S(k)
n (x)p(c)k(1 − p(c)

)n−k
,

where S(k)
n (x) is the number of sequences of length n that contain k positive residuals in which the length of the longest

run of positive or negative residuals does not exceed x. Analogously, Schilling [9] studied the cumulative distribution of L+
n .

In the following proposition, we give a recursive formula to compute the S(k)
n (x).

Proposition 4.1. Let n and x be such that 0 < x � n. Then:

(i) If n − k � x and k � x, S(k)
n (x) = Ck

n.

(ii) If n − k � x and k > x, S(k)
n (x) = ∑x

j=0 S(k)
n− j(x).

(iii) If n − k > x and k � x, S(k)
n (x) = ∑x

j=0 S(k+1− j)
n− j (x).

(iv) If n − k > x and k > x, let

R(k)
n (x) :=

∑
j�0

{
x∑

i=1

{
S(k−1− j(x+1))

n−1−i−2 j(x+1)
(x) + S(k−i− j(x+1))

n−1−i−2 j(x+1)
(x) − S(k−( j+1)(x+1))

n−1−(2 j+1)(x+1)−i(x) − S(k−1− j(x+1)−i)
n−1−(2 j+1)(x+1)−i(x)

}}
,

with the conventions: ∀x ∈ N
∗ and ∀k ∈ N

∗ , S(0)
0 (x) := 1 and S(−k)

−n (x) = S(k)
−n(x) = S(−k)

n (x) := 0.

– If ∃(i, j) ∈ {1, . . . , x} × N
∗ such that (k,n) = (2 j(x + 1) + i, j(x + 1)) or (k,n) = (2 j(x + 1) + i, j(x + 1) + i), then S(k)

n (x) =
R(k)

n (x) + 1;
– if ∃(i, j) ∈ {1, . . . , x} × N

∗ such that (k,n) = ((2 j + 1)(x + 1) + i, j(x + 1) + i) or (k,n) = ((2 j + 1)(x + 1) + i, ( j + 1)(x + 1)),
then S(k)

n (x) = R(k)
n (x) − 1;

– else, S(k)
n (x) = R(k)

n (x).

From this result, one can deduce the exact law of the test statistic under H1,c , and the power of the test follows.
In the next proposition, we show that, for n large enough, the distribution function of Ln is well approximated by the

distribution function of L+
n (or L−

n , depending on the value of p(c)).

Proposition 4.2. If ∀i = 1, . . . ,n, Pr(εi > 0) = p(c), p(c) > 1
2 (resp. p(c) < 1

2 ), then

∀k, Pr(Ln � k) − Pr
(
L+

n � k
) = o(1) when n → ∞

(resp. Pr(Ln � k) − Pr(L−
n � k) = o(1)).

The proof is based on Muselli’s results [6].
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