Number Theory

Bounds on oscillatory integral operators

Estimées sur les integrales oscillatoires

Jean Bourgain, Lawrence Guth
Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, Princeton, NJ 08540, USA

A R T I C L E I N F O

Article history:

Received 6 December 2010
Accepted 8 December 2010
Available online 30 December 2010
Presented by Jean Bourgain

A B S TRACT

We present new estimates in E. Stein's Fourier restriction problem for curved hypersurfaces in \mathbb{R}^{n} and also on the mapping properties of the more general class of oscillatory integral operators introduced by L. Hörmander.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

Nous présentons de nouvelles estimations dans le problème de E. Stein sur la restriction de Fourier à des hyper-surfaces à courbure dans \mathbb{R}^{n} ainsi que sur les intégrales oscillatoires introduites par L. Hörmander.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit $S \subset \mathbb{R}^{n}(n \geqslant 3)$ une hyper-surface compacte et lisse et dont la seconde forme fondamentale est positivement définie. Soit σ sa mesure de surface. Pour $p>2$ fixé et $R \rightarrow \infty$, dénotons

$$
\begin{equation*}
Q_{R}^{(p)}=\max \|\hat{\mu}\|_{L^{p}\left(B_{R}\right)} \tag{1}
\end{equation*}
$$

où $B_{R}=\left\{x \in \mathbb{R}^{n} ;|x|<R\right\}$,

$$
\begin{equation*}
\hat{\mu}(\xi)=\int e^{2 \pi i x . \xi} \mu(\mathrm{d} x) \tag{2}
\end{equation*}
$$

et le maximum est pris sur toutes les measures μ sur S, telles que $\mu \ll \sigma$ et $\left\|\frac{\mathrm{d} \mu}{\mathrm{d} \sigma}\right\|_{\infty} \leqslant 1$. On a l'estimée

$$
\begin{equation*}
Q_{R}^{(p)} \ll R^{\varepsilon} \quad \text { pour toute } \varepsilon>0 \tag{3}
\end{equation*}
$$

si p satisfait la condition

$$
\begin{cases}p \geqslant 2 \frac{4 n+3}{4 n-3} & \text { si } n \equiv 0(\bmod 3) \tag{4}\\ p \geqslant \frac{2 n+1}{n-1} & \text { si } n \equiv 1(\bmod 3) \\ p \geqslant \frac{4(n+1)}{2 n-1} & \text { si } n \equiv 2(\bmod 3)\end{cases}
$$

[^0]Pour $n=3$, on a (3) pour $p \geqslant 3,3$.
Considérons ensuite des intégrales oscillatoires de la forme

$$
\begin{equation*}
\left(T_{\lambda} f\right)(x)=\int_{\operatorname{loc}} e^{i \lambda \psi(x, y)} f(y) \mathrm{d} y \tag{5}
\end{equation*}
$$

où x (resp. y) sont dans un voisinage de $0 \in \mathbb{R}^{n}$ (resp. $0 \in \mathbb{R}^{n-1}$).
La fonction de phase $\psi(x, y)$ a la forme

$$
\begin{equation*}
\psi(x, y)=x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}+x_{n}\langle A y, y\rangle+0\left(|x||y|^{3}\right)+0\left(|x|^{2}|y|^{2}\right) \tag{6}
\end{equation*}
$$

où A est non-dégénéré.
Si n est pair et $\lambda \rightarrow \infty$, on a l'estimation

$$
\begin{equation*}
\left\|T_{\lambda} f\right\|_{p} \ll \lambda^{-\frac{n}{p}+\varepsilon}\|f\|_{\infty} \quad \text { pour tout } \varepsilon>0 \text { et } p \geqslant \frac{2(n+2)}{n} . \tag{7}
\end{equation*}
$$

En supposant A positivement (ou négativement) défini, l'inégalité (7) est vrai si p satisfait les conditions (4) ($n \geqslant 3$ arbitraire).

1. Fourier transform of measures carried by curved hyper-surfaces

Let $S \subset \mathbb{R}^{n}$ be a smooth, compact hyper-surface with positive definite second fundamental form and let σ be its surface measure (the sphere $S=S^{(n-1)}$ and the paraboloid ($\left.y,|y|^{2}\right) \subset \mathbb{R}^{n}$ are the most important model cases). Denote

$$
Q_{R}^{(p)}=\max \|\hat{\mu}\|_{L^{p}\left(B_{R}\right)}
$$

where $B_{R}=\left\{x \in \mathbb{R}^{n} ;|x| \leqslant R\right\}$ and the maximum is taken over all measures $\mu \ll \sigma$ on S such that $\left\|\frac{\mathrm{d} \mu}{\mathrm{d} \sigma}\right\|_{\infty} \leqslant 1$. We have

Theorem 1.

$$
\begin{equation*}
Q_{R}^{(p)} \ll R^{\varepsilon} \quad \text { for all } \varepsilon>0 \tag{8}
\end{equation*}
$$

provided

$$
\begin{cases}p \geqslant 2 \frac{4 n+3}{4 n-3} \quad \text { if } n \equiv 0(\bmod 3) \tag{9}\\ p \geqslant \frac{2 n+1}{n-1} \quad \text { if } n \equiv 1(\bmod 3) \\ p \geqslant \frac{4(n+1)}{2 n-1} \quad \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

and
Theorem 2. For $n=3$, (8) holds for $p \geqslant 3,3$.
Previous best results were due to T. Tao [4], based on an L^{2}-bilinear estimate (going back to the work of T. Wolff), providing the bound $Q_{R}^{(p)}<C_{p}$ for $p>\frac{2(n+2)}{n}$. Thus, apart from the R^{ε}-factor, we improve the exponent in all dimensions, except $n=4$.

Let us recall E. Stein's conjecture, stating that $Q_{R}^{(p)}<C_{p}$ for $p>\frac{2 n}{n-1}$ and which presently is only known to hold for $n=2$.

2. Oscillatory integrals of Hörmander type

We consider oscillatory integral operators of the form

$$
\left(T_{\lambda} f\right)(x)=\int_{\operatorname{loc}} e^{i \lambda \psi(x, y)} f(y) \mathrm{d} y
$$

with real analytic phase function

$$
\begin{equation*}
\psi(x, y)=x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}+x_{n}\langle A y, y\rangle+0\left(|x||y|^{3}\right)+0\left(|x|^{2}|y|^{2}\right) \tag{10}
\end{equation*}
$$

and $A \in \operatorname{Mat}_{n-1}(\mathbb{R})$ non-degenerate.

Here $x \in \mathbb{R}^{n}$ (resp. $y \in \mathbb{R}^{n-1}$) are restricted to sufficiently small neighborhoods of 0 and $\lambda \rightarrow \infty$ is a parameter. Note that if ψ is linear in x, we recover the Fourier transform of a hyper-surface carried measure as considered in Section 1.

We are interested in the mapping properties of T_{λ}. Recall the important L^{2}-inequality (cf. [3])

$$
\begin{equation*}
\left\|T_{\lambda} f\right\|_{p} \leqslant c \lambda^{-\frac{n}{p}}\|f\|_{2} \quad \text { for } p \geqslant \frac{2(n+1)}{n-1} \tag{11}
\end{equation*}
$$

For $n=2$, Hörmander (providing an alternative proof to a result on Bochner-Riesz multipliers, due to Carleson and Sjolin) showed in particular that

$$
\begin{equation*}
\left\|T_{\lambda} f\right\|_{p} \leqslant C \lambda^{-\frac{2}{p}}\|f\|_{\infty} \quad \text { for } p>4 \tag{12}
\end{equation*}
$$

and raised the question of its higher dimensional generalization for $p>\frac{2 n}{n-1}$. Surprisingly (cf. [2]), the answer turned out to be negative. For n odd, there are examples of phase functions ψ such that an inequality of the form

$$
\begin{equation*}
\left\|T_{\lambda} f\right\|_{p} \leqslant C \lambda^{-\frac{n}{p}}\|f\|_{\infty} \tag{13}
\end{equation*}
$$

only holds for $p \geqslant \frac{2(n+1)}{n-1}$. It was also observed in [2] that this extreme situation cannot occur for n even.
Recently, we proved the following:
Theorem 3. For n even, $\lambda \rightarrow \infty$

$$
\left\|T_{\lambda} f\right\|_{p} \ll \lambda^{-\frac{n}{p}+\varepsilon}\|f\|_{\infty} \quad \text { for } p \geqslant \frac{2(n+2)}{n}
$$

and apart from the λ^{ε}-factor, Theorem 3 as a general statement is best possible.
Next, let us specify (10) further by requiring A to be positive (or negative) definite.
Theorem 4. $(n=3)$. For $p>\frac{10}{3}$, assuming A positive definite and ψ a polynomial, one has the inequality

$$
\left\|T_{\lambda} f\right\|_{p} \leqslant C \lambda^{-\frac{3}{p}}\|f\|_{\infty}
$$

and there are such examples where the result is best possible (apart from the endpoint).
Theorem 5. (n arbitrary). Assuming A positive definite, the inequality

$$
\left\|T_{\lambda} f\right\|_{p} \ll \lambda^{-\frac{n}{p}+\varepsilon}\|f\|_{\infty} \quad \text { for all } \varepsilon>0
$$

holds, for p satisfying (9).

3. Comments on the method

The main ingredient in our analysis is the multilinear inequality from [1]. We briefly recall the result. Given ψ as in (10), consider the vectors

$$
\begin{equation*}
Z=Z(x, y)=\partial_{y_{1}}\left(\nabla_{x} \psi\right) \wedge \cdots \wedge \partial_{y_{n-1}}\left(\nabla_{x} \psi\right) \tag{14}
\end{equation*}
$$

Fix $2 \leqslant k \leqslant n$ and open sets U_{1}, \ldots, U_{k} in the y-domain, such that

$$
\begin{equation*}
\left|Z\left(x, y^{(1)}\right) \wedge \cdots \wedge Z\left(x, y^{(k)}\right)\right|>c \tag{15}
\end{equation*}
$$

for some $c>0$, for all x in the specified neighborhood V of $0 \in \mathbb{R}^{n}$ and $y^{(1)} \in U_{1}, \ldots, y^{(k)} \in U_{k}$. Then there is the inequality for $p=\frac{2 k}{k-1}$

$$
\begin{equation*}
\left\|\left(\prod_{i=1}^{k}\left|T_{\lambda} f_{i}\right|\right)^{\frac{1}{k}}\right\|_{L^{p}(V)} \ll \lambda^{-\frac{n}{p}+\varepsilon}\left(\prod_{i=1}^{k}\left\|f_{i}\right\|_{2}\right)^{\frac{1}{k}} \tag{16}
\end{equation*}
$$

assuming supp $f_{i} \subset U_{i}(1 \leqslant i \leqslant k)$.
Note that if ψ is linear in $x, Z=Z(y)$ and assumption (15) is a transversality condition for the normal vectors of the corresponding hyper-surface.

Next, we give a sketch of the proof of Theorem 1 for $n=3$ and taking for S the paraboloid $\left(y_{1}, y_{2}, \frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)\right)$. The argument contains the essence of our method. Thus

$$
\psi(x, y)=x_{1} y_{1}+x_{2} y_{2}+\frac{1}{2} x_{3}\left(y_{1}^{2}+y_{2}^{2}\right) \quad \text { and } \quad Z(y)=\left(-y_{1},-y_{2}, 1\right)
$$

Condition (15) for $k=3$ amounts thus to the non-collinearity of $y^{(1)}, y^{(2)}, y^{(3)} \in \mathbb{R}^{2}$. Let y range in $\Omega=\left[\left|y_{1}\right|,\left|y_{2}\right|<\right.$ $0(1)] \subset \mathbb{R}^{2}$. Fix large parameters $1 \ll K_{1} \ll K$ and let $\left\{Q_{\alpha}^{\prime}\right\}$ (resp. $\left\{Q_{\beta}\right\}$) be partitions of Ω in $\frac{1}{K_{1}}$ (resp. $\frac{1}{K}$) boxes. Denoting ξ_{β} the center of Q_{β}, write

$$
\begin{equation*}
(T f)(x)=\int_{\Omega} e^{i \psi(x, y)} f(y) \mathrm{d} y=\sum_{\beta}\left[\int_{Q_{\beta}} e^{i\left[\psi(x, y)-\psi\left(x, \xi_{\beta}\right)\right]} f(y) \mathrm{d} y\right] e^{i \psi\left(x, \xi_{\beta}\right)}=\sum_{\beta}\left(T_{\beta} f\right)(x) e^{i \psi\left(x, \xi_{\beta}\right)} \tag{17}
\end{equation*}
$$

Fix a ball $B(a, K) \subset B_{R} \subset \mathbb{R}^{3}$. Roughly speaking, we may view $T_{\beta}(x)$ as essentially a constant c_{β} on $B(a, K)$ and denote $c_{*}=\max \left|c_{\beta}\right|$. We distinguish two alternatives.
(i) There are (non-collinear) boxes $Q_{\beta_{1}}, Q_{\beta_{2}}, Q_{\beta_{3}}$ such that

$$
\begin{equation*}
\left|\left(y^{(1)}-y^{(2)}\right) \wedge\left(y^{(1)}-y^{(3)}\right)\right|>\frac{1}{K^{2}} \quad \text { for } y^{(i)} \in Q_{\beta_{i}}(1 \leqslant i \leqslant 3) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|c_{\beta_{i}}\right|>K^{-2} c_{*} \quad \text { for } i=1,2,3 \tag{19}
\end{equation*}
$$

(ii) The negation of (i), implying that there is a line segment $\ell \subset \Omega$ such that

$$
\left|c_{\beta}\right|<K^{-2} c_{*} \text { if } \operatorname{dist}\left(Q_{\beta}, \ell\right) \geqslant 10 K^{-1} .
$$

Assume (i). From (17), (19), $|T f(x)| \lesssim K^{2} c_{*} \lesssim K^{4}\left(\left|T_{\beta_{1}} f\right| \cdot\left|T_{\beta_{2}} f\right| .\left|T_{\beta_{3}} f\right|\right)^{1 / 3}(x)$. The contribution to $L^{p}\left(B_{R}\right)$ is bounded by

$$
\begin{equation*}
K^{4}\left\{\sum_{\beta_{1}, \beta_{2}, \beta_{3}(18)}\left\|\left(T_{\beta_{1}} f . T_{\beta_{2}} f . T_{\beta_{3}} f\right)^{1 / 3}\right\|_{L^{p}\left(B_{R}\right)}^{p}\right\}^{\frac{1}{p}} \ll C(K) R^{\varepsilon} \tag{20}
\end{equation*}
$$

for $p \geqslant 3$, by the [1] 3-linear L^{3}-bound, cf. (16).
If (ii), proceed as follows. Considering the partition $\left\{Q_{\alpha}^{\prime}\right\}$ of Ω, write similarly to (17), $T f(x)=\sum_{\alpha}\left(T_{\alpha}^{\prime} f\right)(x) e^{i \psi\left(x, \xi_{\alpha}^{\prime}\right)}$. Fix $x \in B(a, K)$. Either

$$
\begin{equation*}
|T f(x)| \leqslant 10^{3} \max _{\alpha}\left|T_{\alpha}^{\prime} f(x)\right| \tag{21}
\end{equation*}
$$

or there are α_{1}, α_{2} satisfying

$$
\begin{equation*}
\operatorname{dist}\left(Q_{\alpha_{1}}^{\prime}, Q_{\alpha_{2}}^{\prime}\right)>\frac{10}{K_{1}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(T_{\alpha_{1}}^{\prime} f\right)(x)\right|,\left|\left(T_{\alpha_{2}}^{\prime} f\right)(x)\right| \gtrsim \frac{1}{K_{1}^{2}}|T f(x)| \tag{23}
\end{equation*}
$$

Using parabolic rescaling, the contribution of (21) is estimated by

$$
\begin{equation*}
\left(\sum_{\alpha}\left\|T_{\alpha}^{\prime} f\right\|_{L^{p}\left(B_{R}\right)}^{p}\right)^{1 / p} \lesssim K_{1}^{2 / p} K_{1}^{-2+4 / p} Q_{R / K_{1}}^{(p)} \leqslant K_{1}^{-2+6 / p} Q_{R}^{(p)} \tag{24}
\end{equation*}
$$

Next, assume (22), (23). Note that on $B(a, K)$ by (ii)

$$
\left|\left(T_{\alpha}^{\prime} f\right)(x)\right| \leqslant\left|\sum_{\substack{Q_{\beta} \subset Q_{\alpha}^{\prime} \\ \operatorname{dist}\left(Q_{\beta}, \ell\right)<10 K^{-1}}} c_{\beta} e^{i \psi\left(x, \xi_{\beta}\right)}\right|+\max _{\beta}\left|T_{\beta} f(x)\right|
$$

Hence, by (23), either

$$
\begin{equation*}
|T f(x)| \lesssim K_{1}^{2} \max _{\beta}\left|T_{\beta} f(x)\right| \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
|T f(x)| \lesssim K_{1}^{2} \max _{\alpha_{1}, \alpha_{2}(22)}\left|\sum_{\substack{Q_{\beta} \subset Q_{\alpha_{1}}^{\prime} \\ \operatorname{dist}\left(Q_{\beta}, \ell\right)<10 K^{-1}}} c_{\beta} e^{i \psi\left(x, \xi_{\beta}\right)}\right|^{\frac{1}{2}}\left|\sum_{\substack{Q_{\beta} \subset Q_{\alpha_{2}}^{\prime} \\ \operatorname{dist}\left(Q_{\beta}, \ell\right)<10 K^{-1}}} \ldots\right|^{\frac{1}{2}} . \tag{26}
\end{equation*}
$$

The $L^{p}\left(B_{R}\right)$ contribution of (25) is bounded by, cf. (24)

$$
\begin{equation*}
K_{1}^{2} K^{\frac{6}{p}-2} Q_{R}^{(p)} \tag{27}
\end{equation*}
$$

Using a bilinear L^{4}-bound, estimate

$$
\begin{aligned}
\|(26)\|_{L^{p}(B(a, K))} & \leqslant K^{3\left(\frac{1}{p}-\frac{1}{4}\right)}\|(26)\|_{L^{4}(B(a, K))} \leqslant C\left(K_{1}\right) K^{\frac{3}{p}}\left(\sum_{\operatorname{dist}\left(Q_{\beta}, \ell\right)<10 K^{-1}}\left|c_{\beta}\right|^{2}\right)^{\frac{1}{2}} \\
& <c\left(K_{1}\right) K^{\frac{1}{2}+\frac{2}{p}}\left(\sum_{\beta}\left|T_{\beta} f(x)\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

and integrating on B_{R}, we obtain

$$
\begin{equation*}
C\left(K_{1}\right) K^{\frac{1}{2}-\frac{1}{p}}\left(\sum_{\beta}\left\|T_{\beta} f\right\|_{L^{p}\left(B_{R}\right)}^{p}\right)^{\frac{1}{p}}<C\left(K_{1}\right) K^{\frac{5}{p}-\frac{3}{2}} Q_{R}^{(p)} \tag{28}
\end{equation*}
$$

In view of (24), (27), (28) and (20), a suitable choice of $K_{1} \ll K$ shows that indeed $Q_{R}^{(p)} \ll R^{\varepsilon}$ for $p>\frac{10}{3}$.
Remark. Theorems 1, 3, 4 and 5 are obtained by generalizing and refining the above technique. The proof of Theorem 2 relies moreover on T. Wolff's estimate for the Kakeya maximal function [5].

4. Curved Kakeya sets

A Kakeya set in \mathbb{R}^{n} is a compact set $A \subset \mathbb{R}^{n}$ containing a unit line segment in every direction. Recall that E. Stein's conjecture in Section 1 implies that such sets have maximal Minkowski dimension (i.e. $=n$). Presently, the 'Kakeya conjecture' remains open for $n \geqslant 3$.

Similarly, the mapping properties of T_{λ} in Section 2 are closely related to the structure of the associated curved Kakeya sets', which are compact sets $A \subset \mathbb{R}^{n}$ containing a curve $\Gamma_{y}=\left[\nabla_{y} \psi=b(y)\right]$ for each $y \in \Omega$. Here $b: \Omega \rightarrow B_{1} \subset \mathbb{R}^{n}$ is arbitrary. For n odd, the dimension of such sets may be as small as $\frac{n+1}{2}$. Taking $n=3$, the 2D-compression phenomenon may occur in either the hyperbolic or elliptic setting, as illustrated for instance by the following phase functions

$$
\begin{align*}
& \psi_{1}(x, y)=-x_{1} y_{1}-x_{2} y_{2}+2 x_{3} y_{1} y_{2}+x_{3}^{2} y_{2}^{2} \tag{29}\\
& \psi_{2}(x, y)=-x_{1} y_{1}-x_{2} y_{2}+x_{3}\left(\frac{1}{2} y_{1}^{2}+\frac{1}{2} y_{2}^{2}\right)+x_{3}^{2} y_{1} y_{2}+\frac{1}{2} x_{3}^{3} y_{2}^{2} \tag{30}
\end{align*}
$$

Let us point out that despite this similarity, ψ_{1} violates inequality (13) whenever $p<4$ (see [2]), while for ψ_{2}, by Theorem 4, (13) holds for $p>\frac{10}{3}$ (and fails for $p<\frac{10}{3}$).

In even dimension, there is the following result, providing a sharp version of a phenomenon first observed in [2], and which in some sense is the companion to Theorem 3.

Theorem 6. For n even and ψ as in (10), any curved Kakeya set has Minkowski dimension at least $\frac{n}{2}+1$.

References

[1] J. Bennett, T. Carbery, T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006) 261-302.
[2] J. Bourgain, Some new estimates on oscillatory integrals, in: Annals Math. St., vol. 42, Princeton University Press, 1995, pp. 83-112.
[3] E. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, in: Annals Math. St., vol. 112, Princeton University Press, 1986.
[4] T. Tao, A sharp bilinear restriction estimate for the paraboloids, GAFA 13 (2003) 1359-1384.
[5] T. Wolff, An improved bound for Kakeya-type maximal functions, Rev. Mat. Iber. 11 (3) (1995) 651-674.

[^0]: E-mail addresses: bourgain@ias.edu (J. Bourgain), lguth@ias.edu (L. Guth).
 1631-073X/\$ - see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.12.004

