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This Note describes a method for deriving an asymptotic expansion of the solution of
Laplace equation in a bounded domain of R

P (P = 2,3). This domain is composed of two
subdomains and a separating thin layer of thickness δ (destined to tend to 0). The method
is based on hierarchical variational equations which are suitable for the construction of the
asymptotic expansion up to any order.
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r é s u m é

Dans cette Note, nous présentons une méthode pour construire un développement
asymptotique de la solution de l’équation de Laplace dans un domaine borné de R

P

(P = 2,3). Ce domaine est composé de deux sous-domaines séparés par une couche
mince d’épaisseur δ (destinée à tendre vers 0). La méthode est basée sur une hiérarchie
d’équations variationnelles qui se prêtent au calcul du développement asymptotique à tout
ordre.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this work is to study the asymptotic behavior of the solution of Laplace equation in a bounded domain Ω

of R
P (P = 2,3) consisting of three subdomains: an open bounded subset Ωi with regular boundary Γ , an exterior domain

Ωe with disjoint regular boundaries Γδ and ∂Ω , and a membrane Ωδ (thin layer) of thickness δ separating Ωi from Ωe (see
Fig. 1). We are interested in the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�ue,δ = 0 in Ωe, ud,δ = ue,δ on Γδ,

α�ud,δ = 0 in Ωδ, α∂nud,δ = ∂nue,δ on Γδ,

β�ui,δ = − f i in Ωi, ui,δ = ud,δ on Γ,

ue,δ = 0 on ∂Ω, β∂nui,δ = α∂nud,δ on Γ,

(1)

where ∂n denotes the normal derivative (outward to Ωi), α and β are some positive constants and f i ∈ C∞(Ω̄i).

The solution of this problem via finite element methods exhibits numerical instabilities when the thickness δ of the layer
is considerably small than the size of neighboring (cf. [6]). To avoid this difficulty, we perform asymptotic analysis to model
the effect of the thin layer by conditions on the interface Γ .

E-mail address: boutarenekhaled@yahoo.fr.
1631-073X/$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2010.12.002

http://dx.doi.org/10.1016/j.crma.2010.12.002
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:boutarenekhaled@yahoo.fr
http://dx.doi.org/10.1016/j.crma.2010.12.002


58 K.E. Boutarene / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 57–60
Fig. 1. Geometric data.

Poignard, Schmidt and Tordeux have worked on similar problems in [4,5] and [6]. They studied Helmholtz equation in the
bidimensional case with different boundary conditions. They gave an expansion of Laplace operator in a fixed domain (in-
dependent of δ) and obtained an asymptotic expansion of the solution of Helmholtz equation with appropriate transmission
conditions.

In the present paper, a new framework is proposed with a model problem. It is based on variational formulations (cf.
[1]) which allow one to derive asymptotic expansion up to any order in a simple way. The cases 3D and 2D are similar, we
treat the three-dimensional case, and 2D comes in Remark 1.

The present work is organized as follows: In Section 2, we set the notations and definitions from differential geometry
of surfaces [2] (see also [1] and [3]), which are useful to the following theoretical developments. Section 3 is devoted to the
asymptotic analysis of our system by giving a formal asymptotic expansion of the solution of problem (1). We determine
the first three terms of the expansion and we establish a convergence theorem related to the justification up to any order
of the ansatz.

2. Definitions and notations

Let (U ,ϕ) be a local coordinate patch for the surface Γ , with U being an open domain of R
2 and ϕ : U →Γ such that

ϕ(ξ1, ξ2) = m. We parameterize the thin shell Ωδ by the manifold Ω+ = Γ × (0,1) through the mapping η defined by
η : Ω+ → Ωδ such that η(m, s) = m + δsn(m) = ϕ(ξ1, ξ2) + δsn(ϕ(ξ1, ξ2)).

To each function v defined on Ωδ, we associate the function V + defined on Ω+ by V +(m, s) := v ◦ η(m, s). Let U+ and
V + be two regular functions in H1(Ω+). We define the bilinear form a+(δ; . , .) (cf. [1]) by

δa+(
δ; U+, V +) := αδ−1

∫
Γ

1∫
0

∂sU+∂s V + det(I + sδR)ds dΓ

+ αδ

∫
Γ

1∫
0

(I + sδR)−2∇Γ U+.∇Γ V + det(I + sδR)ds dΓ = α

∫
Ωδ

∇u.∇v dΩδ, (2)

where R is the symmetric linear operator of the tangent plane Tm(Γ ) that characterizes the curvature of Γ at point m and
∇Γ v(m) is the surface gradient of v at m ∈ Γ . Finally, we denote by H and K the mean and the Gaussian curvatures of the
surface Γ respectively.

3. The asymptotic analysis

Let vd be a regular function in H1(Ωδ). We multiply �ud,δ by vd , using Green formula and transmission condition of
problem (1), we obtain∫

Γ

β∂nui,δ vd/Γ dΓ + α

∫
Ωδ

∇ud,δ .∇vd dΩδ +
∫
Γδ

∂nue,δ vd/Γδ
dΓδ = 0. (3)

We remember that U+
d,δ

:= ud,δ ◦ η; in a natural way, we consider the following ansatz

ui,δ =
∑
n�0

δnui,n in Ωi, U+
d,δ

=
∑
n�0

δnU+
n in Γ × [0,1] and ue,δ =

∑
n�0

δnue,n in Ωe, (4)

where the terms ui,n , U+
n and ue,n are independent of δ. As in [4], we extend formally ue,δ to Ω\Ωi , by extending a finite

number of coefficients of the power δ. A Taylor expansion gives
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∂nue,δ ◦ η(m, s) = ∂nue,0/Γ ◦ η(m,0) + δ
[
∂nue,1/Γ ◦ η(m,0) + s∂2

nue,0/Γ ◦ η(m,0)
] + · · · . (5)

Inserting the asymptotic expansions (4) and (5) into the variational equation (3) we obtain, for each function V + ∈ H1(Ω+),∫
Γ

β

{(∑
n�0

δn∂nui,n/Γ

)
◦ η(m,0)

}
V +(m,0) dΓ + δa+

(
δ;

∑
n�0

δnU+
n , V +

)
−

∫
Γ

{
∂nue,0/Γ ◦ η(m,0)

+ δ
[
∂nue,1/Γ ◦ η(m,0) + ∂2

nue,0/Γ ◦ η(m,0)
] + · · ·}V +(m,1)det(I + δR)dΓ = 0. (6)

In order to calculate the terms ui,n , ue,n and U+
n , we give an expansion of the bilinear form a+(δ; . , .) in powers of δ (cf.

[1]), inserting it into (6) and matching the same power of δ, we obtain a hierarchy of variational equations. The first three
terms of the asymptotic expansion are given by solving the following problems

β�ui,n = − f iδ
n
0 in Ωi, �ue,n = 0 in Ω\Ω̄i, ue,n = 0 on ∂Ω, n � 2, (7)

where δn
0 is the Kronecker symbol, with transmission conditions

– of order 0:

{
ui,0/Γ − ue,0/Γ = 0,

β∂nui,0/Γ = ∂nue,0/Γ ,

– of order 1:

⎧⎪⎨
⎪⎩

ui,1/Γ − ue,1/Γ =
(

1 − 1

α

)
∂nue,0/Γ ,

β∂nui,1/Γ − ∂nue,1/Γ = 2H∂nue,0/Γ + ∂2
nue,0/Γ + α�Γ ui,0/Γ ,

– of order 2:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ui,2/Γ − ue,2/Γ =
(

1 − 1

α

)
∂nue,1/Γ − H

α
∂nue,0/Γ +

(
1

2
− 1

α

)
∂2

nue,0/Γ − 1

2
�Γ ui,0/Γ ,

β∂nui,2/Γ − ∂nue,2/Γ = K∂nue,0/Γ + 2H
(
∂nue,1/Γ + ∂2

nue,0/Γ

) + ∂2
nue,1/Γ

+ 1

2
∂3

nue,0/Γ + α�Γ ui,1/Γ + 1

2
�Γ ∂nue,0/Γ + αdivΓ

[
(H I − R)∇Γ ui,0/Γ

]
.

The terms U+
n , n � 2, are given by

U+
0 (m, s) = ui,0/Γ ◦ η(m,0) = ue,0/Γ ◦ η(m,0),

U+
1 (m, s) = ui,1/Γ ◦ η(m,0) + s

α
∂nue,0/Γ ◦ η(m,0),

U+
2 (m, s) = ui,2/Γ ◦ η(m,0) + H

α

(
2s − s2)∂nue,0/Γ ◦ η(m,0) + s

α
∂nue,1/Γ ◦ η(m,0)

+ s

α
∂2

nue,0/Γ ◦ η(m,0) +
(

s − s2

2

)
�Γ ui,0/Γ ◦ η(m,0),

for all (m, s) ∈ Γ × [0,1].

Remark 1. The determination of the terms of the asymptotic expansion in the two-dimensional case does not differ from
the case P = 3. It suffices to replace K by 0 and 2H by R.

We can also estimate the error made by truncating the series (4) after a finite number of terms. Let

uN
i,δ :=

n=N∑
n=0

δnui,n, uN
e,δ :=

n=N∑
n=0

δnue,n and uN
d,δ :=

n=N∑
n=0

δnu+
n ,

where u+
n (m, δs) := U+

n (m, s); ∀(m, s) ∈ Γ × [0,1] and N ∈ N.

Theorem 3.1. For all integers N � 0, there exists a constant C independent of δ such as

∥∥ui,δ − uN
i,δ

∥∥
H1(Ωi)

+ √
δ
∥∥ud,δ − uN

d,δ

∥∥
H1(Ωδ)

+ ∥∥ue,δ − uN
e,δ

∥∥
H1(Ωe)

� CδN+1.
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