

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial Differential Equations

Asymptotic analysis for a diffusion problem

Analyse asymptotique pour un problème de diffusion

Khaled El-Ghaouti Boutarene

AMNEDP Laboratory, Faculty of Mathematics, USTHB, Po Box 32, El Alia 16111, Babezzouar, Algiers, Algeria

ARTICLE INFO

Article history: Received 15 July 2010 Accepted 6 December 2010 Available online 23 December 2010

Presented by Jean-Pierre Demailly

ABSTRACT

This Note describes a method for deriving an asymptotic expansion of the solution of Laplace equation in a bounded domain of \mathbb{R}^P (P = 2, 3). This domain is composed of two subdomains and a separating thin layer of thickness δ (destined to tend to 0). The method is based on hierarchical variational equations which are suitable for the construction of the asymptotic expansion up to any order.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette Note, nous présentons une méthode pour construire un développement asymptotique de la solution de l'équation de Laplace dans un domaine borné de \mathbb{R}^{P} (P = 2, 3). Ce domaine est composé de deux sous-domaines séparés par une couche mince d'épaisseur δ (destinée à tendre vers 0). La méthode est basée sur une hiérarchie d'équations variationnelles qui se prêtent au calcul du développement asymptotique à tout ordre.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this work is to study the asymptotic behavior of the solution of Laplace equation in a bounded domain Ω of \mathbb{R}^{P} (P = 2, 3) consisting of three subdomains: an open bounded subset Ω_{i} with regular boundary Γ , an exterior domain Ω_{e} with disjoint regular boundaries Γ_{δ} and $\partial \Omega$, and a membrane Ω_{δ} (thin layer) of thickness δ separating Ω_{i} from Ω_{e} (see Fig. 1). We are interested in the following problem:

1	$\Delta u_{e,\delta}=0$	in Ω_e ,	$u_{d,\delta} = u_{e,\delta}$	on Γ_{δ} ,	
	$\alpha \Delta u_{d,\delta} = 0$	in Ω_{δ} ,	$\alpha \partial_{\mathbf{n}} u_{d,\delta} = \partial_{\mathbf{n}} u_{e,\delta}$	on Γ_{δ} ,	(1)
ĺ	$\beta \Delta u_{i,\delta} = -f_i$	in Ω_i ,	$u_{i,\delta} = u_{d,\delta}$	on Γ ,	(1)
	$u_{e,\delta}=0$	on $\partial \Omega$,	$\beta \partial_{\mathbf{n}} u_{i,\delta} = \alpha \partial_{\mathbf{n}} u_{d,\delta}$	on Γ ,	

where $\partial_{\mathbf{n}}$ denotes the normal derivative (outward to Ω_i), α and β are some positive constants and $f_i \in C^{\infty}(\overline{\Omega}_i)$.

The solution of this problem via finite element methods exhibits numerical instabilities when the thickness δ of the layer is considerably small than the size of neighboring (cf. [6]). To avoid this difficulty, we perform asymptotic analysis to model the effect of the thin layer by conditions on the interface Γ .

E-mail address: boutarenekhaled@yahoo.fr.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.12.002

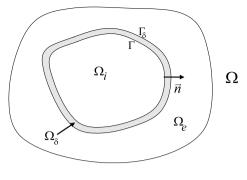


Fig. 1. Geometric data.

Poignard, Schmidt and Tordeux have worked on similar problems in [4,5] and [6]. They studied Helmholtz equation in the bidimensional case with different boundary conditions. They gave an expansion of Laplace operator in a fixed domain (independent of δ) and obtained an asymptotic expansion of the solution of Helmholtz equation with appropriate transmission conditions.

In the present paper, a new framework is proposed with a model problem. It is based on variational formulations (cf. [1]) which allow one to derive asymptotic expansion up to any order in a simple way. The cases 3D and 2D are similar, we treat the three-dimensional case, and 2D comes in Remark 1.

The present work is organized as follows: In Section 2, we set the notations and definitions from differential geometry of surfaces [2] (see also [1] and [3]), which are useful to the following theoretical developments. Section 3 is devoted to the asymptotic analysis of our system by giving a formal asymptotic expansion of the solution of problem (1). We determine the first three terms of the expansion and we establish a convergence theorem related to the justification up to any order of the ansatz.

2. Definitions and notations

Let (\mathcal{U}, φ) be a local coordinate patch for the surface Γ , with \mathcal{U} being an open domain of \mathbb{R}^2 and $\varphi: \mathcal{U} \to \Gamma$ such that $\varphi(\xi^1,\xi^2) = m$. We parameterize the thin shell Ω_{δ} by the manifold $\Omega^+ = \Gamma \times (0,1)$ through the mapping η defined by $\eta: \Omega^+ \to \Omega_{\delta}$ such that $\eta(m,s) = m + \delta s \mathbf{n}(m) = \varphi(\xi^1,\xi^2) + \delta s \mathbf{n}(\varphi(\xi^1,\xi^2))$. To each function ν defined on Ω_{δ} , we associate the function V^+ defined on Ω^+ by $V^+(m,s) := \nu \circ \eta(m,s)$. Let U^+ and

 V^+ be two regular functions in $H^1(\Omega^+)$. We define the bilinear form $a^+(\delta; ..., .)$ (cf. [1]) by

$$\delta a^{+}(\delta; U^{+}, V^{+}) := \alpha \delta^{-1} \int_{\Gamma} \int_{0}^{1} \partial_{s} U^{+} \partial_{s} V^{+} \det(I + s \delta \mathcal{R}) \, \mathrm{d}s \, \mathrm{d}\Gamma$$
$$+ \alpha \delta \int_{\Gamma} \int_{0}^{1} (I + s \delta \mathcal{R})^{-2} \nabla_{\Gamma} U^{+} \cdot \nabla_{\Gamma} V^{+} \det(I + s \delta \mathcal{R}) \, \mathrm{d}s \, \mathrm{d}\Gamma = \alpha \int_{\Omega_{\delta}} \nabla u \cdot \nabla v \, \mathrm{d}\Omega_{\delta}, \tag{2}$$

where \mathcal{R} is the symmetric linear operator of the tangent plane $T_m(\Gamma)$ that characterizes the curvature of Γ at point *m* and $\nabla_{\Gamma} v(m)$ is the surface gradient of v at $m \in \Gamma$. Finally, we denote by \mathcal{H} and \mathcal{K} the mean and the Gaussian curvatures of the surface Γ respectively.

3. The asymptotic analysis

Let v_d be a regular function in $H^1(\Omega_{\delta})$. We multiply $\Delta u_{d,\delta}$ by v_d , using Green formula and transmission condition of problem (1), we obtain

$$\int_{\Gamma} \beta \partial_n u_{i,\delta} v_{d/\Gamma} \, \mathrm{d}\Gamma + \alpha \int_{\Omega_{\delta}} \nabla u_{d,\delta} \cdot \nabla v_d \, \mathrm{d}\Omega_{\delta} + \int_{\Gamma_{\delta}} \partial_n u_{e,\delta} v_{d/\Gamma_{\delta}} \, \mathrm{d}\Gamma_{\delta} = 0.$$
(3)

We remember that $U_{d,\delta}^+ := u_{d,\delta} \circ \eta$; in a natural way, we consider the following ansatz

$$u_{i,\delta} = \sum_{n \ge 0} \delta^n u_{i,n} \quad \text{in } \Omega_i, \qquad U_{d,\delta}^+ = \sum_{n \ge 0} \delta^n U_n^+ \quad \text{in } \Gamma \times [0,1] \quad \text{and} \quad u_{e,\delta} = \sum_{n \ge 0} \delta^n u_{e,n} \quad \text{in } \Omega_e, \tag{4}$$

where the terms $u_{i,n}$, U_n^+ and $u_{e,n}$ are independent of δ . As in [4], we extend formally $u_{e,\delta}$ to $\Omega \setminus \Omega_i$, by extending a finite number of coefficients of the power δ . A Taylor expansion gives

$$\partial_{\mathbf{n}} u_{e,\delta} \circ \eta(m,s) = \partial_{\mathbf{n}} u_{e,0/\Gamma} \circ \eta(m,0) + \delta \left[\partial_{\mathbf{n}} u_{e,1/\Gamma} \circ \eta(m,0) + s \partial_{\mathbf{n}}^2 u_{e,0/\Gamma} \circ \eta(m,0) \right] + \cdots$$
(5)

Inserting the asymptotic expansions (4) and (5) into the variational equation (3) we obtain, for each function $V^+ \in H^1(\Omega^+)$,

$$\int_{\Gamma} \beta \left\{ \left(\sum_{n \ge 0} \delta^n \partial_{\mathbf{n}} u_{i,n/\Gamma} \right) \circ \eta(m,0) \right\} V^+(m,0) \, \mathrm{d}\Gamma + \delta a^+ \left(\delta; \sum_{n \ge 0} \delta^n U_n^+, V^+ \right) - \int_{\Gamma} \left\{ \partial_{\mathbf{n}} u_{e,0/\Gamma} \circ \eta(m,0) + \delta \left[\partial_{\mathbf{n}} u_{e,0/\Gamma} \circ \eta(m,0) \right] + \cdots \right\} V^+(m,1) \, \mathrm{det}(I + \delta \mathcal{R}) \, \mathrm{d}\Gamma = 0.$$
(6)

In order to calculate the terms $u_{i,n}$, $u_{e,n}$ and U_n^+ , we give an expansion of the bilinear form $a^+(\delta;.,.)$ in powers of δ (cf. [1]), inserting it into (6) and matching the same power of δ , we obtain a hierarchy of variational equations. The first three terms of the asymptotic expansion are given by solving the following problems

 $\beta \Delta u_{i,n} = -f_i \delta_0^n \quad \text{in } \Omega_i, \qquad \Delta u_{e,n} = 0 \quad \text{in } \Omega \setminus \bar{\Omega}_i, \qquad u_{e,n} = 0 \quad \text{on } \partial \Omega, \ n \leq 2,$ (7)

where δ_0^n is the Kronecker symbol, with transmission conditions

$$- \text{ of order 0:} \begin{cases} u_{i,0/\Gamma} - u_{e,0/\Gamma} = 0, \\ \beta \partial_{\mathbf{n}} u_{i,0/\Gamma} = \partial_{\mathbf{n}} u_{e,0/\Gamma}, \end{cases}$$

$$- \text{ of order 1:} \begin{cases} u_{i,1/\Gamma} - u_{e,1/\Gamma} = \left(1 - \frac{1}{\alpha}\right) \partial_{\mathbf{n}} u_{e,0/\Gamma}, \\ \beta \partial_{\mathbf{n}} u_{i,1/\Gamma} - \partial_{\mathbf{n}} u_{e,1/\Gamma} = 2\mathcal{H} \partial_{\mathbf{n}} u_{e,0/\Gamma} + \partial_{\mathbf{n}}^{2} u_{e,0/\Gamma} + \alpha \Delta_{\Gamma} u_{i,0/\Gamma}, \end{cases}$$

$$- \text{ of order 2:} \begin{cases} u_{i,2/\Gamma} - u_{e,2/\Gamma} = \left(1 - \frac{1}{\alpha}\right) \partial_{\mathbf{n}} u_{e,1/\Gamma} - \frac{\mathcal{H}}{\alpha} \partial_{\mathbf{n}} u_{e,0/\Gamma} + \left(\frac{1}{2} - \frac{1}{\alpha}\right) \partial_{\mathbf{n}}^{2} u_{e,0/\Gamma} - \frac{1}{2} \Delta_{\Gamma} u_{i,0/\Gamma}, \end{cases}$$

$$+ \frac{1}{2} \partial_{\mathbf{n}}^{3} u_{e,0/\Gamma} + \alpha \Delta_{\Gamma} u_{i,1/\Gamma} + \frac{1}{2} \Delta_{\Gamma} \partial_{\mathbf{n}} u_{e,0/\Gamma} + \alpha \operatorname{div}_{\Gamma} [(\mathcal{H}I - \mathcal{R}) \nabla_{\Gamma} u_{i,0/\Gamma}]. \end{cases}$$

The terms U_n^+ , $n \leq 2$, are given by

$$\begin{split} U_{0}^{+}(m,s) &= u_{i,0/\Gamma} \circ \eta(m,0) = u_{e,0/\Gamma} \circ \eta(m,0), \\ U_{1}^{+}(m,s) &= u_{i,1/\Gamma} \circ \eta(m,0) + \frac{s}{\alpha} \partial_{\mathbf{n}} u_{e,0/\Gamma} \circ \eta(m,0), \\ U_{2}^{+}(m,s) &= u_{i,2/\Gamma} \circ \eta(m,0) + \frac{\mathcal{H}}{\alpha} (2s - s^{2}) \partial_{\mathbf{n}} u_{e,0/\Gamma} \circ \eta(m,0) + \frac{s}{\alpha} \partial_{\mathbf{n}} u_{e,1/\Gamma} \circ \eta(m,0) \\ &+ \frac{s}{\alpha} \partial_{\mathbf{n}}^{2} u_{e,0/\Gamma} \circ \eta(m,0) + \left(s - \frac{s^{2}}{2}\right) \Delta_{\Gamma} u_{i,0/\Gamma} \circ \eta(m,0), \end{split}$$

for all $(m, s) \in \Gamma \times [0, 1]$.

Remark 1. The determination of the terms of the asymptotic expansion in the two-dimensional case does not differ from the case P = 3. It suffices to replace \mathcal{K} by 0 and $2\mathcal{H}$ by \mathcal{R} .

We can also estimate the error made by truncating the series (4) after a finite number of terms. Let

$$u_{i,\delta}^N := \sum_{n=0}^{n=N} \delta^n u_{i,n}, \qquad u_{e,\delta}^N := \sum_{n=0}^{n=N} \delta^n u_{e,n} \quad \text{and} \quad u_{d,\delta}^N := \sum_{n=0}^{n=N} \delta^n u_n^+,$$

where $u_n^+(m, \delta s) := U_n^+(m, s); \ \forall (m, s) \in \Gamma \times [0, 1] \text{ and } N \in \mathbb{N}.$

Theorem 3.1. For all integers $N \ge 0$, there exists a constant *C* independent of δ such as

$$\left\|u_{i,\delta}-u_{i,\delta}^{N}\right\|_{H^{1}(\Omega_{i})}+\sqrt{\delta}\left\|u_{d,\delta}-u_{d,\delta}^{N}\right\|_{H^{1}(\Omega_{\delta})}+\left\|u_{e,\delta}-u_{e,\delta}^{N}\right\|_{H^{1}(\Omega_{e})}\leq C\delta^{N+1}.$$

References

A. Bendali, K. Lemrabet, The effect of a thin coating on the scattering of the time-harmonic wave for the Helmholtz equation, SIAM J. Appl. Math. 56 (6) (1996) 1664–1693.

^[2] M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976.

- [3] J.C. Nedelec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems, Springer, 2001.
 [4] C. Poignard, Méthodes asymptotiques pour le calcul des champs électromagnétiques dans des milieux à couches minces. Application aux cellules biologiques, Thèse de Doctorat, Université Claude Bernard-Lyon 1, 2006.
- [5] K. Schmidt, High-order numerical modeling of highly conductive thin sheets, PhD thesis, ETH Zurich, 2008.
- [6] K. Schmidt, S. Tordeux, Asymptotic modelling of conductive thin sheets, Research Report No. 2008-28, Swiss Federal Institute of Technology Zurich, 2008.