Partial Differential Equations

On a new class of functions related to VMO

Haïm Brezis ${ }^{\text {a }}$, Hoai-Minh Nguyen ${ }^{\text {b }}$
${ }^{\text {a }}$ Rutgers University, Dept. of Math., Hill Center, Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
${ }^{\mathrm{b}}$ Courant Institute, New York University, 251 Mercer St., New York, NY 10012, USA

ARTICLE INFO

Article history:

Received and accepted 23 November 2010
Available online 3 January 2011
Presented by Haïm Brezis

A B S TRACT

In this Note, we compare the space $V M O$ and the spaces

$$
\mathbf{I}_{p}:=\left\{g \in L^{1}(\Omega ; \mathbb{R}) ; \quad \int_{\substack{\Omega \\|g(x)-g(y)|>\delta}} \frac{1}{|x-y|^{d+p}} \mathrm{~d} x \mathrm{~d} y<+\infty \quad \forall \delta>0\right\}
$$

where Ω is a bounded open subset of $\mathbb{R}^{d}, d \geqslant 1$, and $p \geqslant 0$. In particular, we prove that $\mathbf{I}_{d} \subset V M O$. This sharpens the well-known result stating that $W^{s, p} \subset V M O$ for $0<s<1$ and $s p=d$. Moreover, we establish that $V M O$ is much bigger than \mathbf{I}_{d} by showing that $V M O \not \subset \mathbf{I}_{1}$. We also present some results when the double integral above is taken on the set $\{(x, y) \in$ $\left.\Omega \times \Omega ;\left|e^{i g(x)}-e^{i g(y)}\right|>\delta\right\}$.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Dans cette Note, nous comparons l'espace VMO et les espaces
où Ω est un ouvert borné de $\mathbb{R}^{d}, d \geqslant 1$, et $p \geqslant 0$. En particulier, nous prouvons que $\mathbf{I}_{d} \subset$ $V M O$. Ceci améliore le résultat bien connu affirmant que $W^{s, p} \subset V M O$ pour $0<s<1$ et $s p=d$. D'autre part, nous prouvons que $V M O$ est plus grand que \mathbf{I}_{d}; en fait $V M O \not \subset \mathbf{I}_{1}$. Nous présentons aussi des résultats lorsque l'intégrale double ci-dessus est prise sur l'ensemble $\left\{(x, y) \in \Omega \times \Omega ;\left|e^{i g(x)}-e^{i g(y)}\right|>\delta\right\}$.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Main results

The principal motivation of this note comes from the study of the topological degree of maps from the sphere \mathbb{S}^{d} into itself. It was proved in [2] that the degree is well-defined for maps $u \in V M O\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$. In fact it suffices to assume that

$$
\begin{equation*}
\limsup _{|Q| \rightarrow 0} f_{Q}\left|u(x)-\int_{Q} u(y) \mathrm{d} y\right| \mathrm{d} x<1 \tag{1.1}
\end{equation*}
$$

[^0]and the constant 1 is optimal. Note that (1.1) is satisfied in particular if
$$
\limsup _{|Q| \rightarrow 0} f_{Q} f_{Q}|u(x)-u(y)| \mathrm{d} x \mathrm{~d} y<1 / 2
$$

On the other hand, it was proved in [6] that the degree of u is well-defined when

$$
\begin{equation*}
\iint_{\substack{\mathbb{S}^{d} \mathbb{S}^{d} \\|u(x)-u(y)|>\delta}} \frac{1}{|x-y|^{2 d}} \mathrm{~d} x \mathrm{~d} y<+\infty \quad \text { for some } \delta \in\left(0, \ell_{d}\right), \tag{1.2}
\end{equation*}
$$

where $\ell_{d}=\sqrt{2+2 /(d+1)}$; and moreover

$$
\begin{equation*}
|\operatorname{deg} u| \leqslant C_{d} \iint_{\substack{\mathbb{S}^{d} \\|u(x)-u(y)| \geqslant \ell_{d}}} \frac{1}{|x-y|^{2 d}} \mathrm{~d} x \mathrm{~d} y . \tag{1.3}
\end{equation*}
$$

Therefore it is natural to investigate the possible connection between the spaces $V M O, B M O$, and the class of functions satisfying conditions of the type (1.2). We introduce the following definitions. Let Ω be a smooth bounded domain in \mathbb{R}^{d}, and $0 \leqslant p<+\infty$. Set

$$
\mathbf{I}_{p}=\left\{g \in L^{1}(\Omega ; \mathbb{R}) ; \quad \iint_{\substack{\Omega \\|g(x)-g(y)|>\delta}} \frac{1}{|x-y|^{d+p}} \mathrm{~d} x \mathrm{~d} y<+\infty \forall \delta>0\right\}
$$

and

$$
\mathbf{J}_{p}=\left\{g \in L^{1}(\Omega ; \mathbb{R}) ; \quad \iint_{\substack{\Omega \Omega \\|g(x)-g(y)|>\delta}} \frac{1}{|x-y|^{d+p}} \mathrm{~d} x \mathrm{~d} y<+\infty \text { for some } \delta>0\right\}
$$

The case $p<0$ is not interesting because $\mathbf{I}_{p}=\mathbf{J}_{p}$ coincides with $L^{1}(\Omega)$.
Here is a brief list of properties:
A) \mathbf{I}_{p} and \mathbf{J}_{p} are vector spaces.
B) $\mathbf{I}_{p} \subset \mathbf{I}_{q}$ and $\mathbf{J}_{p} \subset \mathbf{J}_{q}$ if $p \geqslant q$.
C) $C(\bar{\Omega}) \subset \mathbf{I}_{p} \subset \mathbf{J}_{p}$ for all $p \geqslant 0$.
D) $W^{s, p} \subset \mathbf{I}_{s p}$ for all $s \in(0,1)$ and $p>1$.

We recall here that, for $0<s<1$ and $p>1$,

$$
W^{s, p}(\Omega):=\left\{g \in L^{p}(\Omega) ;|g|_{W^{s, p}}<+\infty\right\}
$$

where

$$
|g|_{W^{s, p}}^{p}:=\iint_{\Omega} \int_{\Omega} \frac{|g(x)-g(y)|^{p}}{|x-y|^{d+s p}} \mathrm{~d} x \mathrm{~d} y
$$

E) $W^{1, p} \subset \mathbf{I}_{p}$ for all $p>1$. More precisely (see [5]), for $p>1$ and $g \in W^{1, p}(\Omega)$, we have

$$
\delta^{p} \quad \iint_{\substack{\Omega \\|g(x)-g(y)|>\delta}} \frac{1}{|x-y|^{d+p}} \mathrm{~d} x \mathrm{~d} y \leqslant C_{d, p, \Omega} \int_{\Omega}|\nabla g|^{p} \mathrm{~d} x
$$

The constant $C_{d, p, \Omega}$ blows up as $p \rightarrow 1$ and in fact $W^{1,1} \not \subset \mathbf{I}_{1}$ (an example due to A. Ponce is presented in [5]).
F) $\mathbf{J}_{p} \subset L^{p^{*}}$ with $1<p<d$ and $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{d}$ (see [7]). This is an extension of the classical Sobolev embedding $W^{1, p} \subset L^{p^{*}}$. It is not true that $\mathbf{I}_{d} \subset L^{\infty}$ (clearly $W^{s, p} \subset \mathbf{I}_{d}$ and it is known that $W^{s, p} \not \subset L^{\infty}$ for $s p=d$). Even when $p>d$, it is not true that $\mathbf{I}_{p} \subset L^{\infty}$ (see [7]); this is in contrast with the Morrey-Sobolev embedding.

It is known that $W^{s, p} \subset V M O$ for all $d \geqslant 1,0<s \leqslant 1$, and $s p=d$; see e.g. [2]. In view of D), one may wonder whether the larger space \mathbf{I}_{d} is also contained in $V M O$. The answer is positive:

Theorem 1. Let $d \geqslant 1$. Then
a) $\mathbf{J}_{d} \subset B M O$.
b) $\mathbf{I}_{d} \subset$ VMO.

Remark 1. The exponent d in Theorem 1 is optimal in the following sense: if $d \geqslant 1$ and $0 \leqslant p<d$ then $\mathbf{I}_{p} \not \subset B M O$. Indeed, let $q>1$ and $0<s<1$ be such that $p<s q<d$. Then

$$
W^{s, q} \subset \mathbf{I}_{s q} \subset \mathbf{I}_{p} \quad \text { and } \quad W^{s, q} \not \subset B M O
$$

This implies $\mathbf{I}_{p} \not \subset B M O$.
The proof of Theorem 1 is essentially based on the following proposition which is proved in [7]. In what follows, we denote by Q the unit cube in \mathbb{R}^{d}.

Proposition 1. Let $d \geqslant 1, p \geqslant 1, \delta>0$, and $g \in L^{1}(Q)$. Then

$$
\begin{equation*}
\iint_{Q} \int_{Q}|g(x)-g(y)|^{p} \mathrm{~d} x \mathrm{~d} y \leqslant C_{d, p}\left[\int_{\substack{Q \\|g(x)-g(y)|>\delta}} \frac{\delta^{p}}{|x-y|^{d+p}} \mathrm{~d} x \mathrm{~d} y+\delta^{p}\right], \tag{1.4}
\end{equation*}
$$

for some positive constant $C_{d, p}$ depending only on d and p.

Remark 2. The proof of Proposition 1 is quite delicate and it would be desirable to find a more elementary argument, even for $d=1$. It makes use of ideas introduced in Bourgain-Nguyen [1]. It also relies on the John-Nirenberg inequality [4]. Some inequalities related to (1.4) and their applications in the theory of Sobolev spaces are presented in [7].

One may ask whether the inclusions in Theorem 1 are strict. It turns out that VMO is "much bigger" than \mathbf{I}_{d}. In fact, we have a stronger assertion:

Theorem 2. Let $d \geqslant 1$. Then there exists $g \in V M O$ such that $g \in W^{s, p}$ for all $s \in(0,1), p>1$ with $s p<1$, and $g \notin \mathbf{J}_{1}$, i.e.,

$$
\iint_{\substack{Q \\ Q \\|g(x)-g(y)|>\delta}} \frac{1}{|x-y|^{d+1}} \mathrm{~d} x \mathrm{~d} y=+\infty, \quad \forall \delta>0
$$

Remark 3. Let $0 \leqslant t<1$ and $d \geqslant 1$. We have not been able to construct a function $g \in V M O$ such that $g \notin \mathbf{J}_{t}$. It might be true, for example, that $V M O \subset \mathbf{J}_{0}$; this is an open problem.

We next present a variant of Proposition 1.
Theorem 3. Let $1 \leqslant p<+\infty$ and $0<\delta<\sqrt{3}$. We have, for all $g \in C(\bar{Q}, \mathbb{R})$.

$$
\begin{equation*}
\iint_{Q} \int_{Q}|g(x)-g(y)|^{p} \mathrm{~d} x \mathrm{~d} y \leqslant C_{d, p, \delta}\left(\int_{\substack{Q \\ Q \\\left|e^{i g(x)}-e^{i g(y)}\right|>\delta}} \frac{1}{|x-y|^{d+p}} \mathrm{~d} x \mathrm{~d} y+1\right) \tag{1.5}
\end{equation*}
$$

Moreover, the restriction that $\delta<\sqrt{3}$ is optimal.

Theorem 3 has been proved in [3] when $p=1$ and $d=1$. Already in this case the proof is quite elaborate. The case $d=1$ and $p>1$ can be proved using exactly the same argument as in the case $d=1$ and $p=1$. The proof in the case $d>1$ is a consequence of the 1-d case using the argument in Step 2 of the proof of [7, Theorem 1].

Theorem 3 fails if we delete the assumption that $g \in C(\bar{Q})$. In fact, for each $n \in \mathbb{N}_{+}$, take $g_{n}(x)=0$ on $(0,1 / 2) \times(0,1)^{N-1}$ and $g_{n}(x)=2 \pi n$ for $x \in(1 / 2,1) \times(0,1)^{N-1}$. Then

$$
\iint_{Q}\left|g_{n}(x)-g_{n}(y)\right|^{p} \mathrm{~d} x \mathrm{~d} y \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

and

$$
\iint_{Q} \int_{Q}^{(x)}-e^{i g_{n}(y)} \mid>\delta<10 .
$$

Theorem 3 implies Proposition 1 when $g \in C(\bar{Q})$. However we do not know how to deduce Proposition 1 from Theorem 3 for a general function $g \in L^{1}(Q)$ because we are not able to pass to the limit in the RHS of (1.4) when g is regularized.

Another natural question is whether (1.5) holds for $g \in \operatorname{VMO}(Q)$. We know that the answer is positive if $d=1$ and $p=1$ (see [3]). By the same method as in [3], one can prove that the answer holds for $d=1$ and $p>1$.

We also have

Theorem 4. Let $d \geqslant 1$ and $k \in \mathbb{N}_{+}$be such that $1 \leqslant k \leqslant d$. Then there exists $g \in V M O(Q)$ such that $g \in W^{s, p}(Q)$ for all $s \in(0,1)$, $p>1$, and $s p<k$, and

$$
\begin{equation*}
\iint_{\substack{Q \\ Q \\\left|e^{i g(x)}-e^{i g(y)}\right|>\delta}} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|^{d+k}}=+\infty, \quad \forall 0<\delta<2 . \tag{1.6}
\end{equation*}
$$

Detailed proofs of these results will be presented elsewhere.

Acknowledgement

The first author is partially supported by NSF Grant DMS-0802958.

References

[1] J. Bourgain, H.-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 75-80.
[2] H. Brezis, L. Nirenberg, Degree theory and BMO, Part I: Compact manifolds without boundaries, Selecta Math. 1 (1995) 197-263.
[3] H. Brezis, H.-M. Nguyen, On the distributional Jacobian of maps from \mathbb{S}^{N} into \mathbb{S}^{N} in fractional Sobolev and Hölder spaces, Ann. of Math., available online: 31 December 2009.
[4] F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961) 415-426.
[5] H.-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689-720.
[6] H.-M. Nguyen, Optimal constant in a new estimate for the degree, J. d'Analyse Math. 101 (2007) 367-395.
[7] H.-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differential Equations, published online: 12 October 2010, doi:10.1007/ s00526-010-0373-8.

[^0]: E-mail addresses: brezis@math.rutgers.edu (H. Brezis), hoaiminh@cims.nyu.edu (H.-M. Nguyen).
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.11.026

