Combinatorics

A lower bound on the total outer-independent domination number of a tree

Une borne inférieure pour le cardinal des sous-ensembles totalement dominants et extérieurement-indépendants d'un arbre

Marcin Krzywkowski
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

ARTICLE INFO

Article history:

Received 28 February 2010
Accepted after revision 19 November 2010
Available online 18 December 2010
Presented by the Editorial Board

Abstract

A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbour in D, and the set $V(G) \backslash D$ is independent. The total outer-independent domination number of a graph G, denoted by $\gamma_{t}^{o i}(G)$, is the minimum cardinality of the total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have $\gamma_{t}^{0 i}(T) \geqslant(2 n-2 l+2) / 3$, and we characterize the trees attaining this lower bound.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Un sous-ensemble totalement dominant et extérieurement indépendant d'un graphe est un sous-ensemble D des sommets de G tel que chaque sommet de G ait un voisin dans D et l'ensemble $V(G) \backslash D$ soit indépendant. Le plus petit cardinal d'un tel sous-ensemble est noté $\gamma_{t}^{o i}(G)$. Nous démontrons que pour tout arbre T non trivial, d'ordre n avec l feuilles, nous avons $\gamma_{t}^{0 i}(T) \geqslant(2 n-2 l+2) / 3$. De plus, nous caractérisons les arbres réalisant cette borne inférieure.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a graph. By the neighbourhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighbourhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. The path on n vertices we denote by P_{n}. We say that a subset of $V(G)$ is independent if there is no edge between every two its vertices. By a star we mean a connected graph in which exactly one vertex has degree greater than one. By a double star we mean a graph obtained from a star by joining a positive number of vertices to one of its leaves.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \backslash D$ has a neighbour in D, while it is a total dominating set of G if every vertex of G has a neighbour in D. The domination (total domination, respectively) number of G, denoted by $\gamma(G)\left(\gamma_{t}(G)\right.$, respectively), is the minimum cardinality of a dominating (total dominating, respectively) set

[^0]of G. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2]. For a comprehensive survey of domination in graphs, see [3,4].

A subset $D \subseteq V(G)$ is a total outer-independent dominating set, abbreviated TOIDS, of G if every vertex of G has a neighbour in D, and the set $V(G) \backslash D$ is independent. The total outer-independent domination number of G, denoted by $\gamma_{t}^{o i}(G)$, is the minimum cardinality of a total outer-independent dominating set of G. A total outer-independent dominating set of G of minimum cardinality is called a $\gamma_{t}^{o i}(G)$-set. The study of total outer-independent domination in graphs was initiated in [5].

Chellali and Haynes [1] established the following lower bound on the total domination number of a tree. For every nontrivial tree T of order n with l leaves we have $\gamma_{t}(T) \geqslant(n-l+2) / 2$. They also characterized the extremal trees.

We prove the following lower bound on the total outer-independent domination number of a tree. For every nontrivial tree T of order n with l leaves we have $\gamma_{t}^{o i}(T) \geqslant(2 n-2 l+2) / 3$. We also characterize the trees attaining this lower bound.

2. Results

We begin with the following two straightforward observations.
Observation 1. Every support vertex of a graph G is in every $\gamma_{t}^{o i}(G)$-set.
Observation 2. For every connected graph G of diameter at least three there exists a $\gamma_{t}^{o i}(G)$-set that contains no leaf.
We show that if T is a nontrivial tree of order n with l leaves, then $\gamma_{t}^{o i}(T)$ is bounded below by $(2 n-2 l+2) / 3$. For the purpose of characterizing the trees attaining this bound we introduce a family \mathcal{T} of trees $T=T_{k}$ that can be obtained as follows. Let T_{1} be a path P_{4} with support vertices labelled x and y, and let $A\left(T_{1}\right)=\{x, y\}$. Let H be a path P_{3} with a leaf labelled u, and the support vertex labelled v. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by one of the following operations.

- Operation \mathcal{O}_{1} : Attach a vertex by joining it to any vertex of $A\left(T_{k}\right)$. Let $A\left(T_{k+1}\right)=A\left(T_{k}\right)$.
- Operation \mathcal{O}_{2} : Attach a copy of H by joining u to any leaf of T_{k}. Let $A\left(T_{k+1}\right)=A\left(T_{k}\right) \cup\{u, v\}$.

Now we prove that for every tree T of the family \mathcal{T}, the set $A(T)$ defined above is a TOIDS of minimum cardinality equal to $(2 n-2 l+2) / 3$.

Lemma 3. If $T \in \mathcal{T}$, then the set $A(T)$ defined above is a $\gamma_{t}^{o i}(T)$-set of size $(2 n-2 l+2) / 3$.
Proof. We use the terminology of the construction of the trees $T=T_{k}$, the set $A(T)$, and the graph H defined above. To show that $A(T)$ is a $\gamma_{t}^{o i}(T)$-set of cardinality $(2 n-2 l+2) / 3$ we use the induction on the number k of operations performed to construct T. If $T=T_{1}=P_{4}$, then $(2 n-2 l+2) / 3=(8-4+2) / 3=2=|A(T)|=\gamma_{t}^{0 i}(T)$. Let $k \geqslant 2$ be an integer. Assume that the result is true for every tree $T^{\prime}=T_{k}$ of the family \mathcal{T} constructed by $k-1$ operations. Let n^{\prime} be the order of the tree T^{\prime} and l^{\prime} the number of its leaves. Let $T=T_{k+1}$ be a tree of the family \mathcal{T} constructed by k operations.

If T is obtained from T^{\prime} by operation \mathcal{O}_{1}, then $n=n^{\prime}+1$. Observe that $A\left(T^{\prime}\right)$ contains no leaf. Thus $l=l^{\prime}+1$. It is easy to see that $A(T)=A\left(T^{\prime}\right)$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leqslant|A(T)|=\left|A\left(T^{\prime}\right)\right|=\gamma_{t}^{0 i}\left(T^{\prime}\right)$. Of course, $\gamma_{t}^{0 i}(T) \geqslant \gamma_{t}^{0 i}\left(T^{\prime}\right)$. This implies that $\gamma_{t}^{o i}(T)=|A(T)|=\left|A\left(T^{\prime}\right)\right|=\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3=(2 n-2-2 l+2+2) / 3=(2 n-2 l+2) / 3$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{2}. We have $n=n^{\prime}+3$ and $l=l^{\prime}$. It is easy to see that $A(T)=$ $A\left(T^{\prime}\right) \cup\{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{t}^{o i}(T) \leqslant|A(T)|=\left|A\left(T^{\prime}\right)\right|+2=\gamma_{t}^{o i}\left(T^{\prime}\right)+2$. Let us denote by w the neighbour of u other than v and by x a neighbour of w other than u. First assume that there exists a $\gamma_{t}^{o i}(T)$-set that does not contain w. Thus $u, v \in D$. It is easy to see that $D \backslash\{u, v\}$ is a TOIDS of the tree T^{\prime}. Now assume that every $\gamma_{t}^{o i}(T)$ set contains w. Since $\operatorname{diam}(T) \geqslant 3$, let D be a $\gamma_{t}^{o i}(T)$-set that contains no leaf. Thus $u, v \in D$. If $x \in D$, then it is easy to see that $D \backslash\{u, v\}$ is a TOIDS of the tree T^{\prime}. Now suppose that $x \notin D$. Since $T^{\prime} \in \mathcal{T}$, we have $T^{\prime} \neq P_{2}$. This implies that $d_{T^{\prime}}(x)=d_{T}(x) \geqslant 2$. Since $x \notin D$ and the set $V(T) \backslash D$ is independent, every neighbour of x belongs to the set D. Let us observe that $D \cup\{x\} \backslash\{w\}$ is a TOIDS of the tree T that does not contain w, a contradiction. Since in every case $D \backslash\{u, v\}$ is a TOIDS of the tree T^{\prime}, we get $\gamma_{t}^{o i}\left(T^{\prime}\right) \leqslant \gamma_{t}^{o i}(T)-2$. Now we conclude that $\gamma_{t}^{o i}(T)=\gamma_{t}^{o i}\left(T^{\prime}\right)+2$. We get $\gamma_{t}^{o i}(T)=|A(T)|=\gamma_{t}^{o i}\left(T^{\prime}\right)+2=\left|A\left(T^{\prime}\right) \cup\{u, v\}\right|=\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3+2=(2 n-6-2 l+2+6) / 3=(2 n-2 l+2) / 3$.

Now we establish the main result, a lower bound on the total outer-independent domination number of a tree together with the characterization of the extremal trees.

Theorem 4. If T is a nontrivial tree of order n with l leaves, then $\gamma_{t}^{o i}(T) \geqslant(2 n-2 l+2) / 3$ with equality if and only if $T \in \mathcal{T}$.
Proof. If $\operatorname{diam}(T)=1$, then $T=P_{2}$. We have $(2 n-2 l+2) / 3=(4-4+2) / 3=2 / 3<2=\gamma_{t}^{0 i}(T)$. If $\operatorname{diam}(T)=2$, then T is a star $K_{1, m}$. We have $n=m+1$ and $l=m$. Now we get $(2 n-2 l+2) / 3=(2 m+2-2 m+2) / 3=4 / 3<2=\gamma_{t}^{o i}(T)$. Now let us
assume that $\operatorname{diam}(T)=3$. Thus T is a double star. If $T=P_{4}$, then $T \in \mathcal{T}$, and by Lemma 3 we have $\gamma_{t}^{o i}(T)=(2 n-2 l+2) / 3$. Now assume that T is a double star different than P_{4}. By Observation 1, for any double star T^{*} of the family \mathcal{T} both support vertices belong to every $\gamma_{t}^{o i}\left(T^{*}\right)$-set. Lemma 3 implies that they belong to the set $A\left(T^{*}\right)$ defined earlier. Therefore the tree T can be obtained from P_{4} by proper numbers of operations \mathcal{O}_{1} performed on the support vertices. Thus $T \in \mathcal{T}$. By Lemma 3 we have $\gamma_{t}^{o i}(T)=(2 n-2 l+2) / 3$.

Now we assume that $\operatorname{diam}(T) \geqslant 4$. Thus the order of the tree T is an integer $n \geqslant 5$. We obtain the result by induction on the number n. Assume that the theorem is true for every tree T^{\prime} of order $n^{\prime}<n$ with l^{\prime} leaves.

First assume that some support vertex of T, say x, is adjacent to at least two leaves. One of them let us denote by y. Let $T^{\prime}=T-y$. We have $n^{\prime}=n-1$ and $l^{\prime}=l-1$. Since every $\gamma_{t}^{o i}\left(T^{\prime}\right)$-set, as well as every $\gamma_{t}^{o i}(T)$-set, contains every support vertex, it is easy to observe that $\gamma_{t}^{o i}(T)=\gamma_{t}^{o i}\left(T^{\prime}\right)$. Now we get $\gamma_{t}^{o i}(T)=\gamma_{t}^{o i}\left(T^{\prime}\right) \geqslant\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3=(2 n-2-2 l+2+2) / 3=$ $(2 n-2 l+2) / 3$. If $\gamma_{t}^{o i}(T)=(2 n-2 l+2) / 3$, then obviously $\gamma_{t}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. By Observation 1, the vertex x is in every TOIDS of the tree T^{\prime}. Lemma 3 implies that $x \in A\left(T^{\prime}\right)$. Therefore the tree T can be obtained from T^{\prime} by operation \mathcal{O}_{1}. Thus $T \in \mathcal{T}$. Henceforth, we can assume that every support vertex of T is adjacent to exactly one leaf.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let v be a support vertex at maximum distance from r, u be the parent of v, and w be the parent of u in the rooted tree. By T_{x} let us denote the subtree induced by a vertex x and its descendants in the rooted tree T. We distinguish between the following two cases: $d_{T}(u) \geqslant 3$ and $d_{T}(u)=2$.

Case 1. $d_{T}(u) \geqslant 3$. First assume that u has a child $b \neq v$ that is a support vertex. Let $T^{\prime}=T-T_{v}$. We have $n^{\prime}=n-2$ and $l^{\prime}=l-1$. Let D be a $\gamma_{t}^{o i}(T)$-set that contains no leaf. Thus $u, v, b \in D$. Of course, $D \backslash\{v\}$ is a TOIDS of the tree T^{\prime}. Therefore $\gamma_{t}^{o i}\left(T^{\prime}\right) \leqslant \gamma_{t}^{o i}(T)-1$. Now we get $\gamma_{t}^{o i}(T) \geqslant \gamma_{t}^{o i}\left(T^{\prime}\right)+1 \geqslant\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3+1=(2 n-4-2 l+2+2+3) / 3=(2 n-2 l+3) / 3>$ $(2 n-2 l+2) / 3$.

Now assume that v is the only one support vertex among the descendants of u. Thus u is a parent of a leaf, say x. Let $T^{\prime}=T-x$. We have $n^{\prime}=n-1$ and $l^{\prime}=l-1$. Let D be any $\gamma_{t}^{o i}(T)$-set. We have $u, v \in D$. It is easy to see that D is a TOIDS of the tree T^{\prime}. Therefore $\gamma_{t}^{o i}\left(T^{\prime}\right) \leqslant \gamma_{t}^{o i}(T)$. Now we get $\gamma_{t}^{o i}(T) \geqslant \gamma_{t}^{o i}\left(T^{\prime}\right) \geqslant\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3=(2 n-2-2 l+2+2) / 3=$ $(2 n-2 l+2) / 3$. If $\gamma_{t}^{o i}(T)=(2 n-2 l+2) / 3$, then obviously $\gamma_{t}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. It follows from the definition of the family \mathcal{T} that for every tree $T^{*} \in \mathcal{T}$ the set $A\left(T^{*}\right)$ does not contain any leaf. Lemma 3 implies that $A\left(T^{\prime}\right)$ is a TOIDS of the tree T^{\prime}. Since v has to have a neighbour in $A(T)$, we have $u \in A\left(T^{\prime}\right)$. Therefore the tree T can be obtained from T^{\prime} by operation \mathcal{O}_{1}. Thus $T \in \mathcal{T}$.

Case 2. $d_{T}(u)=2$. We consider the following two possibilities: $d_{T}(w)=2$ and $d_{T}(w) \geqslant 3$. First assume that $d_{T}(w)=2$. The parent of w let us denote by x. If $d_{T}(x)=1$, then $T=P_{5}$. We have $(2 n-2 l+2) / 3=(10-4+2) / 3=8 / 3<3=\gamma_{t}^{o i}(T)$. Now assume that $T \neq P_{5}$. Thus $d_{T}(x) \geqslant 2$. First let us prove that there exists a $\gamma_{t}^{o i}(T)$-set that does not contain w. Assume that there exists a $\gamma_{t}^{0 i}(T)$-set D that contains w. If $x \notin D$, then every neighbour of x belongs to D as the set $V(T) \backslash D$ is independent. It is easy to see that $D \cup\{x\} \backslash\{w\}$ is a TOIDS of the tree T of cardinality $|D|=\gamma_{t}^{o i}(T)$. Thus $D \cup\{x\} \backslash\{w\}$ is a $\gamma_{t}^{o i}(T)$-set that does not contain w. If $x \in D$, then no neighbour of x besides w belongs to the set D, otherwise $D \backslash\{w\}$ is a TOIDS of the tree T of cardinality $\gamma_{t}^{o i}(T)-1$, a contradiction. Let y be any neighbour of x besides w. Observe that $D \cup\{y\} \backslash\{w\}$ is a TOIDS of the tree T of cardinality $|D|=\gamma_{t}^{o i}(T)$. Thus $D \cup\{y\} \backslash\{w\}$ is a $\gamma_{t}^{o i}(T)$-set that does not contain w. Now we conclude that there exists a $\gamma_{t}^{o i}(T)$-set that does not contain w. Let D be such a set. Of course, we have $u, v \in D$. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3$ and $l^{\prime}=l$. Let us observe that $x \in D$ as $w \notin D$ and the set $V(T) \backslash D$ is independent. Thus $D \backslash\{u, v\}$ is a TOIDS of the tree T^{\prime}. Therefore $\gamma_{t}^{o i}\left(T^{\prime}\right) \leqslant \gamma_{t}^{o i}(T)-2$. Now we get $\gamma_{t}^{o i}(T) \geqslant \gamma_{t}^{o i}\left(T^{\prime}\right)+2 \geqslant\left(2 n^{\prime}-2 l^{\prime}+2\right)+2=$ $(2 n-6-2 l+2+6) / 3=(2 n-2 l+2) / 3$. If $\gamma_{t}^{o l}(T)=(2 n-2 l+2) / 3$, then we easily get $\gamma_{t}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3$. By the inductive hypothesis we get $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{2}. Thus $T \in \mathcal{T}$.

Now assume that $d_{T}(w) \geqslant 3$. First assume some descendant of w is a leaf. Let D be a $\gamma_{t}^{o i}(T)$-set that contains no leaf. Thus $v, u, w \in D$. The descendant of v let us denote by z. Let $T^{\prime}=T-z$. We have $n^{\prime}=n-1$ and $l^{\prime}=l$. It is easy to see that $D \backslash\{v\}$ is a TOIDS of the tree T^{\prime}. Therefore $\gamma_{t}^{o i}\left(T^{\prime}\right) \leqslant \gamma_{t}^{o i}(T)-1$. Now we get $\gamma_{t}^{o i}(T) \geqslant \gamma_{t}^{o i}\left(T^{\prime}\right)+1 \geqslant\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3+1=$ $(2 n-2-2 l+2+3) / 3=(2 n-2 l+3) / 3>(2 n-2 l+2) / 3$.

Now assume that among the descendants of w there is no leaf. Let x be a descendant of w different from u. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3$ and $l^{\prime}=l-1$. Let D be a $\gamma_{t}^{o i}(T)$-set that contains no leaf. We have $u, v, x \in D$. Observe that $D \backslash\{u, v\}$ is a TOIDS of the tree T^{\prime}. Therefore $\gamma_{t}^{o i}\left(T^{\prime}\right) \leqslant \gamma_{t}^{o i}(T)-2$. Now we get $\gamma_{t}^{o i}(T) \geqslant \gamma_{t}^{o i}\left(T^{\prime}\right)+2 \geqslant\left(2 n^{\prime}-2 l^{\prime}+2\right) / 3+2=$ $(2 n-6-2 l+2+2+6) / 3=(2 n-2 l+4) / 3>(2 n-2 l+2) / 3$.

References

[1] M. Chellali, T. Haynes, A note on the total domination number of a tree, J. Combin. Math. Combin. Comput. 58 (2006) 189-193.
[2] E. Cockayne, R. Dawes, S. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
[3] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[4] T. Haynes, S. Hedetniemi, P. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[5] M. Krzywkowski, Total outer-independent domination in graphs, submitted for publication.

[^0]: E-mail address: fevernova@wp.pl.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.11.021

