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We compare the character of the algebra (U (g)/U (g)hλ)
h, as used by Fujiwara and Cor-

win and Greenleaf, with the character produced from biquantization techniques applied in
the Lie case by Cattaneo and Torossian. We prove that up to a smaller (specialization) al-
gebra, these two characters are the same. An old example is also treated and it is proved
that we now get more information about the question of when the symmetrization is an
isomorphism of algebras.
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r é s u m é

Nous comparons le caractère de l’algèbre (U (g)/U (g)hλ)
h, tel qu’utilisé par Fujiwara et

Corwin–Greenleaf, avec le caractère produit par les techniques de bi-quantification appli-
quées au cas des algèbres de Lie par Cattaneo–Torossian. Nous démontrons que ces deux
caractères coïncident, à une algèbre (de spécialisation) plus petite près. Nous discutons éga-
lement un exemple bien connu et nous obtenons des informations supplémentaires quant
à la question de savoir si la symétrisation est un isomorphisme d’algèbres.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a real nilpotent, connected and simply connected Lie group with g its Lie algebra, h a subalgebra of g, λ ∈ h∗
such that λ([h,h]) = 0. Then for Y ∈ h, χλ : H → C defined by χλ(exp Y ) = eiλ(Y ) , is a unitary character of H and we
define the induced representation τλ := Ind(G ↑ H,χλ) with Hilbert space Hλ := L2(G, H, λ) the separable completion of
C∞

c (G, H,χλ) with respect to the norm ‖φ‖2 = ∫
G/H |φ(g)|2 dG/H (g). The action of G on φ ∈ L2(G, H, λ) is translation on

the left: τλ(g)(φ)(g′) = φ(g−1 g′). These data correspond to a line bundle Lλ with base space G/H and space of sections
these functions φ. Let H−∞

λ be the space of antilinear continuous forms on H∞
λ , the later being the space of C∞-vectors

of Hλ . The action of UC(g) on H−∞
λ will be denoted by dτ−∞

λ and the action of UC(g) on H∞
λ is denoted respectively

by dτ∞
λ .
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Penney vectors. Let f ∈ g∗ such that f |h = λ and b a polarization with respect to f . We denote B its associated Lie group.
Set hi f := 〈H + i f (H), H ∈ h〉. We shall denote by UC(g)h−i f the ideal of UC(g) generated by h−i f . Let also dH,H∩B be a
left-invariant measure on H/H ∩ B . Let α f be an element of H−∞

f defined for φ ∈ H∞
f , as

〈α f , φ〉 =
∫

H/H∩B

φ(h)χλ(h)dH/H∩B(h). (1)

The vector α f is H-semi-invariant [3]. Because of this invariance property of α f , the algebra (UC(g)/UC(g)h−i f )
h is

acting on α f .

In an algebraic setting the lagrangian condition can be rewritten as

∃O ⊂ λ + h⊥ a non-empty Zariski-open set, such that ∀ f ∈ O, dim(h · f ) = 1

2
dim(g · f ). (2)

Recall that if the H · f orbits are lagrangian in the G · f orbits, then (UC(g)/UC(g)h−i f )
h is commutative (for this result

see [7, §5, Theorem 5.4 and Corollary 5.5]).

2. Construction of characters

One of our main objects is the reduction algebra H0
(ε)(h

⊥
λ ,d(ε)

h⊥
λ ,q

). To briefly describe it we first need to describe

the differential d(ε)

h⊥
λ ,q

: S(q)[ε] → S(q)[ε] ⊗ h∗ . This differential is defined as d(ε)

h⊥
λ ,q

:= ∑∞
i=1 ε id(i)

h⊥
λ ,q

where d(i)
h⊥

λ ,q
:=∑

Γ ∈Bi∪B W i
ωΓ BΓ . Here Γ stands for Kontsevich graphs (as in [10]) that have to belong to Bi ∪ B W i , a special family

of Kontsevich graphs (namely Bernoulli and Bernoulli attached to a wheel, see [6] for their description). The component
ωΓ is a real coefficient depending on Γ and BΓ is a differential operator depending also on Γ . For more details on the
definitions and the formulas we refer to [1, §2.3.2, §3.2.1], or the note [2]. The elements of this algebra are polynomials
(on the formal deformation parameter ε) P (ε) , which are solutions of the equation d(ε)

h⊥
λ ,q

(P (ε)) = 0. The space of solutions

is a vector space which we equip with the Cattaneo–Felder (associative) star-product ∗C F ,ε to take the reduction algebra

H0
(ε)(h

⊥
λ ,d(ε)

h⊥
λ ,q

).

Choose a supplementary space q for h in g. Let Y ∈ g, set q(Y ) := detg(
sinh adY

2
adY

2
), and recall the symmetrization map

β : S(g) → U (g). Define T1, T2 to be the operators

T1 : H0
(ε)

(
g∗,d(ε)

g∗
) → H0

(ε)

(
h⊥

λ ,d(ε)

g∗,h⊥
λ ,q

)
, F �→ F ∗1 1,

T2 : H0
(ε)

(
h⊥

λ ,d(ε)

h⊥
λ ,q

) → H0
(ε)

(
h⊥

λ ,d(ε)

g∗,h⊥
λ ,q

)
, G �→ 1 ∗2 G,

that is the operators defining the Cattaneo–Felder bimodule structure on the biquantization diagram of g∗ and h⊥
λ . We

denoted as H0
(ε)

(h⊥
λ ,d(ε)

g∗,h⊥
λ ,q

) the reduction space at the corner of this diagramm and as ∗1,∗2 its left H0
(ε)

(g∗,d(ε)
g∗ )-

module structure and its right H0
(ε)(h

⊥
λ ,d(ε)

h⊥
λ ,q

)-module structure, respectively. Using some simple facts we write them as

T1 : (S(ε)(g),∗D K ) � (U (ε)(g), ·) → S(q)[ε], T2 : H0
(ε)(h

⊥
λ ,d(ε)

h⊥
λ ,q

) → S(q)[ε].
The PBW theorem holds for the deformed algebras S(ε)(g) = S(q)[ε] ⊕ S(ε)(g) ∗D K hλ (∗D K stands for the Duflo–

Kontsevich star-product) and U (ε)(g) and there is a symmetrization map β(ε) : S(ε)(g) → U (ε)(g). We denote βq,(ε) :
S(q)[ε] → U (ε)(g)/U (ε)(g)hλ the quotient of this symmetrization map with respect to the chosen q. We now write
∀X ∈ g,q(ε)(X) := q(ε X) and note that using the isomorphism (S(ε)(g),∗D K ) � (S(ε)(g),∗C F ) � (U (ε)(g), ·), U(ε)(g) can be
decomposed as U (ε)(g) = β̄q,(ε) ◦ ∂

q1/2
(ε)

(S(q)[ε])⊕ U (ε)(g) · hλ . Finally we will write T 1 := T1|S(q)[ε] . It takes a small lemma to

show that T 1 is an isomorphism of vector spaces and we will denote abusively by T −1
1 its inverse T −1

1 : S(q)[ε] → S(q)[ε] ⊂
H0

(ε)(g
∗,d(ε)

g∗ ).
In [1, §3.4.2, Theorem 3.1] and the note [2] we proved that there is an explicit non-canonical isomorphism

βq,(ε) ◦ ∂
q1/2
(ε)

◦ T −1
1 T2 : H0

(ε)

(
h⊥

λ ,d(ε)

h⊥
λ ,q

) �→ (
U (ε)(g)/U (ε)(g)hλ

)h
.

We shall use this fact to construct a family of characters by means of Cattaneo–Felder–Torossian techniques [4,5]. More
specifically,

Theorem 1. (See [6].) Let g be a Lie algebra over R, h ⊂ g, f ∈ g∗ such that h is lagrangian with respect to f . Let b be a polarization
of f and qb a transverse supplementary of h. The map
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γC T : (U (ε)(g)/U (ε)(g)h f
)h → R[ε] u �→ T L

1 ◦ β̄−1
qb,(ε)

(u)( f )

is a character of (U (ε)(g)/U (ε)(g)hλ)
h .

Modifying the initial conditions we actually get something more useful: The previous theorem constructs only one char-
acter. However if the Lie group G is nilpotent, under the general lagrangian condition (∃O ⊂ −λ + h⊥ such that ∀l ∈ O,
the orbits H · l ⊂ G · l are lagrangian submanifolds), we can construct a character of (U (ε)(g)/U (ε)(g)hλ)

h for each such
element l. Our goal here is to compare the character defined through the Penney eigendistribution in non-commutative
harmonic analysis with that of deformation quantization.

Let H∞
f be the C∞-vectors of the Hilbert space of the representation τ f = Ind(G, H, f ) and α f ∈ H−∞

f the distribution

defined for φ ∈ H∞
f from the formula 〈α f , φ〉 = ∫

H/H∩B φ(h)χλ(h) dH/H∩B(h).

Theorem 2. (See [8].) Let g be a Lie algebra (dim(g) < ∞), h ⊂ g, λ a character of h. Suppose that generically the representation
τλ = Ind(G, H, λ) has finite multiplicities in her spectral decomposition. Then for l ∈ λ + h⊥ and A ∈ (UC(g)/UC(g)hil)

h , the action
dτl(A)(αl) is a multiple of αl . Thus there exists a character λl : (UC(g)/UC(g)hil)

h → C defined by the relation dτl(A)(αl) = λl(A)αl .

Before we proceed, we need to define two specialization algebras. First we set H0
(ε=1)(h

⊥
λ ,d(ε=1)

h⊥
λ ,q

) := H0
(ε)(h

⊥
λ ,d(ε)

h⊥
λ ,q

)/

〈ε − 1〉 to be the specialization algebra of the reduction algebra H0
(ε)(h

⊥
λ ,d(ε)

h⊥
λ ,q

).

Consider a supplementary variable T such that [T ,g] = 0 and set gT = g ⊕ 〈T 〉 and hT = h ⊕ 〈T 〉 such that dim(gT ) =
dim(g) + 1. Set also U (gT ) to be the universal enveloping algebra of gT and U (gT )hT

λ to be the ideal of U (gT ) generated
by hT

λ = 〈H + T λ(H), H ∈ h〉. Let H be the associated Lie group of h and consider the unitary character χλ : H → C defined
by the formula for Y ∈ h, χλ(exp Y ) = exp(iλ(Y )). Denote C∞(G, H,χλ) the vector space of complex smooth functions θ

on G that satisfy the property ∀h ∈ H , ∀g ∈ G , θ(gh) = χ−1
λ (h)θ(g). We denote D(g,h, λ) the algebra of linear differential

operators, that leave the space C∞(G, H,χλ) invariant and commute with the left translation on G .
Recall that from a theorem of Koornwider we have (U (g)/U (g)hλ)

h � D(g,h, λ). Thus setting DT (g,h, λ) := D(gT ,hT , λ)

we can also write (U (gT )/U (gT )hT
λ )hT � DT (g,h, λ). Finally we define our second specialization algebra D(T =1)(g,h, λ) :=

(U (gT )/U (gT )hT
λ )hT /〈T − 1〉. In [1, §3.5.3, Theorem 3.5] it is proved, as the outcome of a series of other results that

D(T =1)(g,h, λ) � H0
(ε=1)(h

⊥
λ ,d(ε=1)

h⊥
λ ,q

). This result can also be found in [2].

In order to proceed to the character comparison, it is necessary that the theorems of harmonic analysis and deforma-
tion quantization refer to the same field. So we need a real character since the whole Kontsevich construction which we
mentioned is over R:

Theorem 3. (See [1, § 4.4.2, Theorem 4.3].) Let g,h, λ as before and suppose that the H-orbits are lagrangian in the affine space λ+h⊥ .
Then for a regular f ∈ λ+h⊥ and such that dim(h · f ) = 1

2 dim(g · f ), and A ∈ D(T =1)(g,h, λ), the action dτ f (A)(α( f )) is a multiple

of α( f ), and so there is defined a character λ
f
(T =1) : D(T =1)(g,h, λ) → R such that dτ f (A)(α( f )) = λ

f
(T =1)(A)α( f ).

Proof. The idea is to follow the line of proof of Fujiwara proving Theorem 2. This is done by double induction on dim(g)

and dim(h) and works fine up to the case h ⊂ g0, g0 being a codimension one ideal of g (constructed in a standard way
using the reduction triplet in the sense of Dixmier). In this case, the condition of Corwin–Greenleaf (see (1) of Eqs. (2.7)
in [9]) holds for the character itλ and we have

(
UC(g)/UC(g)hitλ

)h = (
UC(g0)/UC(g0)hitλ

)h
. (3)

This equation depends rationally on it , t ∈ R
∗ . So if (3) holds for it , t ∈ R

∗ , it holds also for t in a Zariski-open subset
of R and we write (UC(g)/UC(g)htλ)

h = (UC(g0)/UC(g0)htλ)
h , but we can’t conclude that a similar equation holds for

the algebra (UC(g)/UC(g)hλ)
h . This is the difference with respect to the proof of Theorem 2 which was about a unitary

character. To overcome this setback, we can use polynomial families t �→ ut ∈ (UC(g0)/UC(g0)htλ)
h . This will allow us

to continue the argument and it explains at the same time why the character in the theorem’s statement is defined for
D(T =1)(g,h, λ) which is elsewhere [1, §3.5.3, Corollary 3.2] shown to correspond to elements who are the value at t = 1 of
polynomial families t �→ ut ∈ (U (g)/U (g)htλ)

h . The proof then continues by carefully applying the induction arguments on
dim(g). �

Thus the real character that we construct has a price: The corresponding theorem for the Penney distribution now holds
for a smaller algebra: Here becomes also clear the use of the specialization algebra D(T =1)(g,h, λ) � H0

(ε=1)(h
⊥
λ ,d(ε=1)

h⊥
λ ,q

)

introduced in [1]. This algebra might be the appropriate object of study when it comes to the Duflo and Corwin–Greenleaf
conjectures.
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3. Comparison of characters and example

Let i(ε=1) : H0
(ε=1)(h

⊥
λ ,d(ε=1)

h⊥
λ ,q

) ↪→ (U (g)/U (g)hλ)
h be the injective map coming from H0

(ε=1)(h
⊥
λ ,d(ε=1)

h⊥
λ ,q

) ↪→ H0(h⊥
λ ,dh⊥

λ ,q)

and H0(h⊥
λ ,dh⊥

λ ,q) ↪→ (U (g)/U (g)hλ)
h .

Theorem 4. (See [1, §4.4.4, Theorem 4.4].) Let g be a nilpotent Lie algebra (dim(g) < ∞), h ⊂ g a subalgebra, λ a character of h.
Let P ∈ H0

(ε=1)(h
⊥
λ ,d(ε=1)

h⊥
λ ,q

) and u ∈ D(T =1)(g,h, λ) such that u = i(ε=1)(P ). Then for a generic f ∈ λ + h⊥ there is a pair (b f ,q f )

satisfying T1 ◦ β−1
q f ,(ε)

(P )|ε=1(− f ) = λ
f
(T =1)

(u).

Proof. This is done again by a long double induction on dim(g) and dim(h) confirming that in every step, we compute in the
same subspaces for D(T =1)(g,h, λ) and H0

(ε=1)(h
⊥
λ ,d(ε=1)

h⊥
λ ,q

) and that the computations match, giving the same character. �
Example. We end the present Note with an example that reveals the power of this approach (the fully detailed and com-
puted example is in §5.5 of [1]): Let g be the nilpotent Lie algebra generated by X, U , V , E, Z with relations [U , V ] = E ,
[X, U ] = V , [X, V ] = Z , h = RX ⊕ RE and λ = E∗ . For a u ∈ (U (g)/U (g)hλ)

h and with the right choices (transversal condi-

tion) of ql,q we have β−1
ql

(u) = e[ 1
12l(Z)

(1− Z
2l(Z)

)∂3
U ]

β−1
q (u), where βq is the quotient symmetrization map. If v is a polynomial

of (U (g)/U (g)hλ)
h then β−1

q (v)(l) = e− 1
24l(Z)

∂3
U β−1

ql
(v)(l).

The map γC T : v �→ (e[ 1
12l(Z)

(1− Z
2l(Z)

)∂3
U ]

β−1
q (v))(l) is a character of the algebra of differential operators (U (g)/U (g)hλ)

h .
The important point here is the term in the exponential. This example was long before treated as a counterexample to the
idea that the symmterization map β was an algebra isomorphism in this case. Indeed, it was not possible to compute its
exact formula for this isomorphism.

The relation β−1
ql

(u) = e[ 1
12l(Z)

(1− Z
2l(Z)

)∂3
U ]

β−1
q (u) reveals the problem and computes in this case the extra term of third

degree with rational coefficients, which can only be computed using the deformation quantization techniques.
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