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Department of Mathematics, Çankırı Karatekin University, 18100, Çankırı, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 July 2010
Accepted after revision 8 November 2010
Available online 24 November 2010

Presented by Jean-Pierre Demailly

In this Note, we give a new method to compute the Hilbert basis of the semigroup
of certain positive divisors supported on the exceptional divisor of a normal surface
singularity. Our approach is purely combinatorial and enables us to avoid the long
calculation of the invariants of the ring as it is presented in the work of Altınok and Tosun.
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r é s u m é

Dans ce travail, nous donnons une nouvelle méthode pour calculer les générateurs du
semigroupe de certains diviseurs positifs a support sur le diviseur exceptionnel d’une
singularité de surface normale. Notre approche est purement combinatoire et permet
d’éviter le calcul difficile des invariants de l’anneau tel qu’il est présenté dans le travail
de Altınok et Tosun.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The exceptional divisor of a resolution of a singularity of a normal surface is a connected curve. The set of positive
divisors supported on this exceptional divisor satisfying some negativity condition forms a semigroup, called the semigroup
of Lipman in reference to his work [13]. The unique smallest element of this semigroup characterizes the class of the
singularity; for example, if the geometric genus of the smallest element is zero then the singularity is called rational [2].
When the singularity is rational, the elements of the semigroup of Lipman are in one-to-one correspondence with the
functions in the local ring at the singularity. These elements are important to understand algebraic and topological structure
of the corresponding singularity, see [5,14,15].

The smallest element of the semigroup of Lipman is calculated by the Laufer algorithm (see [12, 4.1]) and all the other
elements are computed by the algorithms given in [16,18]. The natural question of determining an explicit finite generating
set for the semigroup is answered in [1]. The authors use the tools from toric geometry to compute all the generators by
means of the generators of certain ring of invariants. Their method is effective but it is difficult to follow for an exceptional
divisor with many components.

Here we present an easier combinatorial method to obtain the set of generators of the semigroup of Lipman. More sig-
nificantly, we describe another semigroup associated to an exceptional divisor whose Hilbert basis, which can be computed
directly from the intersection matrix of the exceptional divisor, gives exactly the generators of the Lipman semigroup and the
corresponding ring of invariants at the same time. The latter is important for a deeper study of properties of the associated
toric variety, such as being a set-theoretic complete intersection [3] or having a nice Castelnuovo–Mumford regularity [8].
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2. Preliminaries

In this section, we recall some terminology and results which will be used later without any reference. Let Y be a normal
surface with an isolated singularity at 0 and (X, E) → (Y ,0) be a resolution of singularities with an exceptional curve E
over 0. Let E1, . . . , En be the irreducible components of E . The set of divisors supported on E forms a lattice defined by

M := {m1 E1 + · · · + mn En | mi ∈ Z}.
There is an additive subsemigroup of M which is referred to as the Lipman semigroup and is defined by

E := {D ∈ M | D · Ei � 0, for any i = 1, . . . ,n}.
It follows that if m1 E1 + · · · + mn En ∈ E \{0} then mi > 0, for all i = 1, . . . ,n, see [2]. By definition, D ∈ E if and only if

D · Ei = −di for some di ∈ N and for all i = 1, . . . ,n. Denote by M(E) the intersection matrix of the exceptional divisor E ,
that is, a matrix with integral entries defined by the intersection multiplicities Ei · E j . It is known that M(E) is negative
definite.

Given D = m1 E1 + · · · + mn En ∈ M , with mi > 0. The following equivalence determines the elements of E

D · Ei = −di ⇔ M(E)[m1 · · ·mn]T = −[d1 · · ·dn]T . (1)

If ei = [0 · · ·1 · · ·0]T is the standard basis element of the space of column matrices of size n, then every column matrix
−[d1 · · ·dn]T , with all di � 0, is spanned by −e1, . . . ,−en . Hence, it follows that the rational cone over E is generated by the
Fi which is defined to be the (rational) solution of the matrix equation above corresponding to −ei for each i. Therefore,
we can write Fi as follows:

Fi =
n∑

j=1

aij

bi j
E j,

where aij and bij are relatively prime integers. Now, let gi be the least common factor of bi1, . . . ,bin so that gi Fi is
the smallest multiple of Fi that belongs to E . Denote by M ′ the lattice generated by F1, . . . , Fn and let N , N ′ be the
corresponding dual lattices of M , M ′ respectively. Then, N ′ is a sublattice of N of finite index, since M is a sublattice of M ′ .

Denote by σ̌ the cone in MR := M ⊗Z R spanned by the semigroup E . The semigroup σ̌ ∩ M ⊇ E is called the saturation
of E and the semigroup E itself is called saturated (or normal) if σ̌ ∩ M ⊆ E as well.

Proposition 1. E is a pointed, saturated semigroup which is also simplicial and finitely generated.

Proof. If D ∈ E , then D · Ei � 0 which forces that −D · Ei � 0. This means that D ∈ E ∩ (−E ) if and only if D = 0, which
proves that E is pointed.

Now, take D ∈ σ̌ ∩M , i.e. D = mD ′ , for some D ′ ∈ E and m > 0. Since D ′ ∈ E , we have D ′ · Ei � 0 which yields immediately
that D · Ei = mD ′ · Ei � 0. Therefore, D must belong to E which reveals that E is saturated.

Since E is saturated it follows that E = σ̌ ∩ M and thus σ̌ is generated by n = dim σ̌ = rank M linearly independent
elements F1, . . . , Fn over Q+ , which means that σ̌ is a maximal and simplicial strongly convex rational polyhedral cone. This
shows that E is simplicial.

That E has a unique finite minimal generating set H E over N follows directly from [17, Lemma 13.1]. �
Definition 1. The unique minimal generating set H E of E over N is called the Hilbert basis of E .

Since E is saturated, we can associate a normal toric variety V E := Spec C[E ] to E , see [7] for details. It turns out that
the coordinate ring C[E ] of this variety is nothing but the ring of invariants of C[M ′] under the natural action of N/N ′ , see
[1, Proposition 3.4].

Remark 1. V E is isomorphic to the geometric quotient Ck/G in the language of the Geometric Invariant Theory, since
G = N/N ′ is a finite group and E is simplicial. Hence, V E has only quotient singularities.

3. Main results

Recall that the unique minimal generating set H S of a pointed, saturated semigroup S is called the Hilbert basis of S ,
see [17]. We first associate to E the obvious subsemigroup of Nn;

S1 := {
(m1, . . . ,mn) ∈ Nn

∣∣ m1 E1 + · · · + mn En ∈ E
}
.

Proposition 2. φ1 : E → S1 is an isomorphism, where φ1(m1 E1 + · · · + mn En) = (m1, . . . ,mn).
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Similarly, we can associate another subsemigroup S2 of Nn with the semigroup E as follows:

S2 := {
(d1, . . . ,dn) ∈ Nn

∣∣ di = −(D · Ei), for some D ∈ E and for all i = 1, . . . ,n
}
.

Proposition 3. S2 and E are isomorphic as semigroups. Moreover, the Hilbert basis of S2 determines the parametrization of the toric
variety V E .

Proof. Define φ2 : E → S2 by φ2(D) = (−D · E1, . . . ,−D · En), for each D ∈ E . This defines clearly a homomorphism between
the semigroups, since we have

(
D + D ′) · Ei = D · Ei + D ′ · Ei, for any i = 1, . . . ,n.

Surjectivity follows from Eq. (1) together with M(E) being invertible over the rationals. Indeed, for a given (d1, . . . ,dn) ∈
S2 there are non-negative rational numbers m′

i such that [m′
1 · · ·m′

n]T = −(M(E))−1[d1 · · ·dn]T . Multiplying m′
i by the least

common factor of the positive integers in the denominators of m′
i , we get non-negative integers mi such that φ2(D) =

(d1, . . . ,dn), where D = m1 E1 + · · · + mn En ∈ E . The injectivity follows similarly.
We prove the second part now. Since C[E ] and C[S2] are isomorphic from the first part, V S2 is an embedding of

V E = Spec C[E ] in some affine space. It is known that C[S2] is generated minimally by the monomials ud1
1 · · · udn

n which
is determined by (d1, . . . ,dn) ∈ H S2 . Therefore we need to determine the elements of H S2 more precisely. Since S2 is a
subsemigroup of Nn and φ2(gi Fi) = giei is the smallest element of S2 on the i-th ray of the cone φ2(σ̌ ), it follows that H S2

contains giei , for each i = 1, . . . ,n. If we denote by h j = h j1e1 + · · · + h jnen the other elements of the Hilbert basis of S2,
then it follows from [10, Corollary 2] that the toric variety V S2 is parametrized by the toric set

Γ (S2) = {(
ug1

1 , . . . , ugn
n , uh11

1 · · · uh1n
n , . . . , uhk1

1 · · · uhkn
n

) ∣∣ u1, . . . , un ∈ C
}
. �

In order to state our main result, let A = [M(E)|In] be the n × 2n integer matrix obtained by joining the intersection
matrix M(E) of the exceptional divisor E and the identity matrix of size n × n. Then, we define the last semigroup as

S = {
(v1, . . . , v2n) ∈ N2n

∣∣ A · [v1 · · · v2n]T = 0
}
.

Here is the nice relation between the three semigroups defined so far.

Theorem 4. S = S1 × S2 .

Proof. The following observations can be seen immediately.

(v1, . . . , v2n) ∈ S ⇔ A · [v1 · · · v2n]T = 0 ⇔ M(E) · [v1 · · · vn]T = −[vn+1 · · · v2n]T

⇔ D = v1 E1 + · · · + vn En ∈ E and D · Ei = −vn+i, for any i = 1, . . . ,n

⇔ (v1, . . . , vn) ∈ S1 and (vn+1, . . . , v2n) ∈ S2.

Therefore, the proof is complete. �
The Hilbert basis of this last semigroup is easy to find and gives important information about the others as we see now.

Corollary 5. Hilbert basis of S gives the generators of the Lipman semigroup and the parametrization of the corresponding toric variety
at the same time.

Proof. By Theorem 4, it follows that the elements of H S is in bijection with the elements of H S1 and H S2 . Hence,
(m1, . . . ,mn,d1, . . . ,dn) ∈ H S if and only if (m1, . . . ,mn) ∈ H S1 and (d1, . . . ,dn) ∈ H S2 . Now, it is clear from Proposition 2
that (m1, . . . ,mn) ∈ H S1 if and only if m1 E1 +· · ·+mn En ∈ HE . On the other hand, we know from the proof of Proposition 3
that H S2 determines the parametrization of the toric variety associated to E . �
Remark 2. Our main Theorem 4 gives rise to an algorithm which starts with the intersection matrix M(E) and computes
the Hilbert basis H E of the Lipman semigroup and the parametrization of the toric variety V E at once. It uses existing
algorithms for computing Hilbert basis of lattice points of cones, where the lattice is given by the kernel of an integral
matrix A, see [9] and references therein or [11, Chapter 6].

We conclude the Note with an illustration of our user-friendly combinatorial method.
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Example 1. Consider the exceptional divisor E over a singularity of A2-type. Then A =
[ −2 1 1 0

1 −2 0 1

]
.

A computation with a computer package (e.g. CoCoA [4] or 4ti2 [6]) gives the Hilbert basis of S to be the set

H S = {
(2,1,3,0), (1,1,1,1), (1,2,0,3)

}
.

This says that H E = {2E1 + E2, E1 + E2, E1 + 2E2} and the smallest element E1 + E2 is the fundamental cycle of E . Since
H S2 = {(3,0), (1,1), (0,3)}, it also says that the corresponding toric variety V E is parametrized by the toric set Γ (S2) =
{(u3

1, u1u2, u3
2) | u1, u2 ∈ C}.
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