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We characterize the convexity properties of the tangent injectivity domain on an the
ellipsoid of revolution in the oblate case.
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r é s u m é

On caractérise les propriétés de convexité du domaine d’injectivité sur un ellipsoïde de
révolution oblate.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The purpose of the present Note is to study convexity properties of injectivity domains on the oblate ellipsoid of revolu-
tion given in R3 by the Cartesian equation

Eμ: x2 + y2 +
(

z

μ

)2

= 1,

with unit semi-major axis and semi-minor axis of length μ ∈ (0,1]. To this aim, we use the covering of Eμ minus its poles

R × (0,π) � (θ,ϕ) �→ (sinϕ cos θ, sinϕ sin θ,μ cosϕ),

and consider the metric

ds2 = X dθ2 + (1 − X/λ)dϕ2,

where X = sin2 ϕ and λ = 1/(1 − μ2) ∈ (1,∞]. It can be put in polar form setting

dψ = dϕ
√

1 − X/λ,

which amounts to introducing the elliptic function of second kind ψ = E(ϕ,k) with modulus k2 = 1/λ. According to standard
Riemannian geometry [1], for any geodesic but equator and meridians, ψ and ϕ are periodic with the same period T . In
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consequence, a geodesic on the oblate ellipsoid of revolution is either a meridian circle, or the equator, or a curve symmetric
with respect to the equator such that the ψ component is periodic. Geodesics are integral curves of the Hamiltonian

H = 1

2

(
p2

θ

X
+ p2

ϕ

1 − X/λ

)
,

where p = (pθ , pϕ) is the adjoint vector. The coordinate θ is cyclic, and pθ = constant is the Clairaut relation. The Hamilto-
nian flow allows to define the exponential mapping on R × H(x0, .)

−1({1/2}) by

expx0
(t, p0) = x(t, x0, p0).

As a subset of the cotangent bundle, the injectivity domain is defined as

I(x0) = {
tp0

∣∣ t ∈ [
0, tcut(x0, p0)

]
, H(x0, p0) = 1/2

}
,

where the cut time tcut(x0, p0) is the supremum of times t > 0 such that the curve expx0
(·, p0) is minimizing from x0 =

expx0
(0, p0) to expx0

(t, p0). Since Eμ is symmetric with respect to the equator with Gaussian curvature nondecreasing from
the North pole to the equator, the cut time may be shown [4,10] to satisfy (excluding the equator)

tcut(x0, p0) = tcut(pθ ) = T (pθ )

2
,

where T (pθ ) denotes the period of the ϕ variable.
Convexity properties are identical whether the domain is expressed on the tangent or on the cotangent bundle since the

corresponding change of coordinates is the linear Legendre transform. The domain is convex if and only if its boundary is a
convex curve, that is a curve with constant sign curvature. The aim of next section is to sketch a proof of the following:

Theorem 1.1. The injectivity domain on an oblate ellipsoid of revolution is convex for any point if and only if the ratio between the
minor and the major axes is greater or equal to 1/

√
3.

It is worth noticing that the convexity issue plays a crucial role in the regularity theory of optimal transport maps
with quadratic cost on Riemannian manifolds (see the monograph [12] for more on optimal transportation). In [9], the
convexity of all injectivity domains together with the Ma–Trudinger–Wang condition, is shown to be necessary and sufficient
for a compact Riemannian surface to satisfy the so-called transport continuity property (Theorem 1.3, in [9]). Therefore,
Theorem 1.1 shows that any oblate ellipsoid of revolution with μ < 1/

√
3 cannot satisfy this property. In [7], this was

proven for μ � 0.29 < 1/
√

3 (Corollary 5.1, in [7]). According to [8, Theorem 1.1], convexity of all injectivity domains holds
for any small enough C4 perturbation of the round metric on the sphere. As a consequence, the injectivity domains of any
oblate ellipsoid of revolution close enough to the round sphere (μ = 1) are always convex. Furthermore, it may be shown
that convexity of all injectivity domains is lost in the singular Riemannian case μ = 0 (see the argument below) and a
fortiori on oblate ellipsoids with small enough semi-minor axis. Theorem 1.1 confirms these facts and shows indeed that the
only issue for convexity is the value of μ with respect to 1/

√
3.

Besides its own geometric interest, the oblate ellipsoid case is also related to the optimal control of two bodies in space
mechanics. It is shown in [2, § 3] that this control problem leads to study on the two-sphere a one-parameter family of
metrics1 which are conformal to the canonical one on an oblate ellipsoid of revolution. This allows to interpretate the
parameter as the ratio μ between the minor and major axes of the conformal ellipsoid.2

2. Sketch of the proof

Given λ and ϕ0 (θ0 can be set to zero thanks to the symmetry of revolution), the level set H = 1/2 is parameterized
according to

pθ = cosα
√

X0, pϕ = sinα
√

1 − X0/λ, α ∈ [0,2π ],
with X0 = sin2 ϕ0. Because of symmetries, convexity has only to be checked on a quarter of the curve, α ∈ [0,π/2]. The
boundary of the injectivity domain on the cotangent space is

α �→ T (pθ )

2
(pθ , pϕ),

so the curvature condition is expressed as a sign condition on the quantity

1 Also independently introduced in [5].
2 Surprisingly, the Gauss curvature of these metrics is nondecreasing from the North the pole to the equator (which ensures a simple structure of cut

loci [10, Main Theorem]) if and only if μ is again greater or equal to 1/
√

3.
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T
(
T + pθ T ′) + (

X0 − p2
θ

)(
2T ′2 − T T ′′), pθ ∈ [0,

√
X0 ],

where ′ = d/dpθ and where T implicitly also depends on the parameter λ. The quadrature on ϕ is parameterized by the
algebraic complex curve

[
Ẋ(λ − X)√

λ

]2

= 4
(

X − p2
θ

)
(X − 1)(X − λ)

which is of genus one excluding the following degeneracies. When X0 = 1 (ϕ0 = π/2), pθ = 1 defines the equator. The
curve also degenerates to a rational surface for λ = ∞ (μ = 1—round sphere) or λ = 1 (μ = 0—flat ellipsoid). In the latter
case, as the induced metric on the two-sided disk is flat (see [3, Section 4]), the injectivity domain for μ close to 0 and ϕ0
close to π/2 is by continuity a deformation of the union at the origin of two disjoint disks (eight-shaped domain), hence
not convex. Conversely, for μ close to 1, the metric is C4-close to the round one and convexity must hold for an arbitrary
initial condition (see [6, Theorem 1.3] or [8, Theorem 1.1]).

Setting

u = X − p2
θ + 1 + λ

3
and v = Ẋ(λ − X)√

λ
,

we get the Weierstrass parameterization by v2 = 4u3 − g2u − g3 with invariants rational in the parameters,

g2 = 4

3

[
p4

θ − (λ + 1)p2
θ + (

λ2 − λ + 1
)]

,

g3 = 4

27

[
2p6

θ − 3(λ + 1)p4
θ − 3

(
λ2 − 4λ + 1

)
p2

θ + (
2λ3 − 3λ2 − 3λ + 2

)]
.

Since X is in [p2
θ ,1], u belongs to [e2, e3] where the three roots of the cubic are

e1 = 2λ − p2
θ − 1

3
, e2 = 2p2

θ − 1 − λ

3
, e3 = 2 − p2

θ − λ

3
·

The parameterization uses the bounded component of the real cubic, that is z ∈ ω′+R where ωZ+ω′Z is the real rectangular
lattice of periods of u(z) = ℘(z). The time law is

dt

dz
= λ − X√

λ

so the period of ϕ , which is twice the period of X , equals

T = 4√
λ

(e1ω + η), η = ζ(ω).

Differentiating the period ω and the quasi-period η with respect to the invariants g2, g3 (see [11, pp. 307–308]), the
derivatives in pθ are obtained as linear combinations in ω and η with coefficients in R(λ, pθ ). One has

∂ω = −Aω − Bη, ∂η = Cω + Aη,

where

∂ = δ
d

dpθ

, δ = 3(p2
θ − 1)(p2

θ − λ)

pθ

,

A = 2p2
θ − (λ + 1), B = 3, C = 1

3

[
p4

θ − (λ + 1)p2
θ + (

λ2 − λ + 1
)]

.

Define τ = 3T
√

λ/4. The derivatives up to second order of τ are

τ = −(
p2

θ − 2λ + 1
)
ω + 3η, τ ′ = pθ

p2
θ − 1

[−(
p2

θ + λ − 2
)
ω + 3η

]
,

τ ′′ = [(2λ − 1)p4
θ − (λ2 + 1)p2

θ − λ(λ − 2)]ω + 3[(λ − 2)p2
θ + λ]η

(p2
θ − 1)2(p2

θ − λ)
·

We only provide a sketch of proof that involves the two following lemmas:

Lemma 2.1. For any λ > 1 and X0 ∈ [0,1), the (normalized) curvature

κ(pθ , X0, λ) = τ
(
τ + pθ τ

′) + (
X0 − p2

θ

)(
2τ ′2 − ττ ′′)

is decreasing in pθ on [0,
√

X0 ].
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The worst case is so obtained for pθ = √
X0, and the sign of κ2 defined according to

κ2(X0, λ) = τ + τ ′√X0

has to be checked for X0 ∈ [0,1].

Lemma 2.2. For any λ > 1, κ2 is decreasing in X0 on [0,1).

The function κ2 degenerates as X0 → 1 (equator). Now,

κ2 = ω

1 − X0

[
(λ − 1 − 3χ) + (λ − 2 + 6χ)(1 − X0) + 2(1 − X0)

2], χ = η

ω
·

The degeneracy of χ is known [11, p. 314], and the previous differentiation rules imply

∂χ = C + 2Aχ + Bχ2

which allows to obtain an asymptotic of first order of χ when X0 → 1. Finally,

κ2 = 3π

2
√

λ − 1

(
λ − 3

2

)
+ o(1), X0 → 1,

hence the zero for λ = 3/2, that is for μ = 1/
√

3. As a result, domains of injectivity of the oblate ellipsoid are convex (for
any initial condition) if and only if the semi-minor axis is not less than 1/

√
3. Below this limit, there are always initial

conditions such that convexity is lost.
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