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The notion of relatedness loci in the parabolic slices Per1(e2π ip/q) in moduli space of
quadratic rational maps is introduced. They are counterparts of the disconnectedness or
escape locus in the slice of quadratic polynomials. A model for these loci is presented, and
a strategy of proof of the faithfulness of the model is given.
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r é s u m é

Nous introduisons la notion de lieux de parenté dans les sections paraboliques Per1(e2π ip/q)

de l’espace des modules des fractions rationnelles quadratiques. Ce sont des analogues du
lieu de non-connexité dans la section correspondant aux polynômes quadratiques. Nous
présentons un modèle pour ces lieux, et donnons une stratégie de preuve de la fidélité de
ce modèle.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M2 denote the moduli space of Möbius conjugacy classes of quadratic rational maps f : Ĉ → Ĉ. Following definitions
and statements from Milnor [3], consider loci:

Per1(λ) = {[ f ] ∈ M2: f has a fixed point with eigenvalue λ
} ∼= C.

Here the focus will be on parabolic slices Per1(ω), with ω = e2π ip/q , p/q �= 0/1, i.e. those consisting of equivalence
classes of maps with a parabolic fixed point with eigenvalue ω. In such a slice the dynamics is characterized according to
the behavior of the critical points. The relatedness locus Rω in Per1(ω) is defined by:

Rω =
{
[ f ] ∈ Per1(ω): lim

n→∞ f n(c1) = z0 = lim
n→∞ f n(c2)

}
, (1)

where z0 is the (persistent) parabolic fixed point and c1 and c2 are the critical points of f . The locus Rω is neither
open nor closed. It consists of open, connected components of maps where both critical points are in the parabolic basin
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Fig. 1. A sketch of the construction of X ω , in the case p/q = 2/5.

(in [3] — for hyperbolic components — called bitransitive and capture components respectively, according to whether both
or only one critical point is in the immediate basin, also studied by Rees [6] under different names), a countable set of
points corresponding to maps where one critical point is eventually mapped to the parabolic fixed point, and a finite set
of points corresponding to maps where the parabolic fixed point is degenerate, i.e. has two q-cycles of components in the
immediate basin. In the slice Per1(0) the relatedness locus R0 is the escape locus C \ M , where M is the Mandelbrot set,
the connectedness locus in the slice of polynomials.

2. The model

The objective is to construct a model for Rω (see Theorem 3.1). Consider the quadratic polynomial

Pω(z) = ωz + z2,

with a parabolic fixed point with multiplier ω at 0. This fixed point is called the α-fixed point. Let Λω denote the parabolic
basin of 0 for Pω and define also an augmented basin Λ̃ω:

Λ̃ω =
{

z ∈ Ĉ: lim
n→∞ Pn

ω(z) = 0
}

= Λω ∪ {
z ∈ Ĉ: ∃n � 0, Pn

ω(z) = 0
}
.

The immediate basin has q components, labelled B j , j ∈ {0, . . . ,q − 1} counter-clockwise, so that B0 contains the critical

point −ω/2. It follows from the theory of quadratic polynomials that there are q external rays landing at 0, dividing Ĉ

into q components. Let S p denote the component containing the critical value Pω(−ω/2). Let φω : Λω → C be an extended
Fatou coordinate for P q

ω , i.e. a surjective holomorphic map, of infinite degree, with critical points at the critical point −ω/2
of Pω and at all its pre-images, so that φω ◦ P q

ω = 1 + φω .
Normalize φω so that φω ◦ Pω = 1/q + φω and φω(−ω/2) = 0. Let P j

δ ⊂ B j be the connected component of φ−1
ω ({z =

x + iy: x > δ}) ∩ B j with the fixed point 0 on its boundary, called a petal.
Denote by Xω the subset of the Riemann sphere obtained by removing the union of the closures of the petals P1/q ,

Xω = Ĉ \ ⋃q−1
j=0 P j

1/q . Let X̂ω ∼= Ĉ \ D be the Carathéodory compactification of Xω , i.e. the disjoint union of Xω and the

set consisting of all prime ends of Xω . The boundary of X̂ω can be naturally identified with the boundaries of the petals,
together with q copies of the α-fixed point, corresponding to the q different accesses to the α-fixed point from Xω . The
copies are labelled α̂ j , j ∈ {0, . . . ,q − 1} counter-clockwise, so that α̂ j is an endpoint of ∂P j and ∂P j+1 (Fig. 1). For the

remainder of this section sets in Ĉ \ ⋃q−1
j=0 P j

1/q are to be understood as subsets of X̂ω , i.e. with q copies of the α-fixed
point.

Now an equivalence relation on X̂ω is defined. To shorten notation let ∂P j = ∂P j
1/q .

Definition 2.1. Two points z1 ∈ ∂P j and z2 ∈ ∂P k are called equivalent modulo p/q, written z1 ∼p/q z2, if the following two
conditions are satisfied:

– j + k = 2p mod q, and
– φω(z1) + φω(z2) = 2/q.

Two points α̂ j and α̂k are said to be equivalent modulo p/q if j + k = (2p − 1) mod q.

Let X ω be the quotient of X̂ω under the equivalence relation ∼p/q , let πω : X̂ω → X ω denote the projection map induced
by ∼p/q and let νω = πω(∂ X̂ω) ⊂ X ω denote the scar after gluing the real-analytic boundaries of the petals back together
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under ∼p/q . It can be proved [7] that the map πω gives X ω a Riemann surface structure which extends the initial structure

of Xω , and so that X ω ∼= Ĉ.

Definition 2.2. The model space Λ̂ω ⊂ X ω for Rω is defined by Λ̂ω = (Λ̃ω \ (S p ∪ ⋃q−1
j=0 P j

1/q))/∼p/q .

The set S p is removed because it in some sense corresponds to non-realizable matings (i.e. matings of Pω with maps from
the conjugate limb L−p/q).

Definition 2.3. From the Fatou coordinate define a tree in Λ̂ω , called a bubble-tree and denoted T̂ ω , by:

T̂ ω = πω

(
φ−1

ω (R) ∪
⋃
n>0

P−n
ω (0)

)
∪ νω.

The bubble-tree has vertices at pre-fixed and (pre)-critical points of Pω and at the points πω(α̂i), i ∈ {0, . . . ,q − 1}. A metric
is defined on the tree by assigning length one to every edge and letting the distance between any two vertices be the sum
of the lengths of the edges in the unique finite path between them.

3. Faithfulness of the model

Theorem 3.1. There exists a bijective map χω : Rω → Λ̂ω , which is conformal in int(Rω). The inverse (χω)−1 is continuous on
compact subsets of the bubble-tree T̂ ω , with respect to the topology induced by the metric on the tree.

The inverse (χω)−1 does not extend to ∂Λ̂ω as an injective map, but it seems tempting to conjecture that it extends to ∂Λ̂ω

as a continuous, surjective map. However, one would expect a proof of continuity to be similar to proving local connectivity
of M . A more accessible conjecture would be that (χω)−1 extends continuously to points in ∂Λ̂ω that correspond to (pre)-
periodic points in ∂Λω (the Julia set for Pω) and to the boundary of components that correspond to strictly pre-periodic
components of Λω .

Let fσ ∈ Rω be non-degenerate parabolic, let φσ be a Fatou coordinate for fσ and let R ∈ R be smallest so that the
union of petals

⋃q−1
j=0 P j

σ ,R contains no critical point, but contains (at least) one critical point on the boundary. These petals
are called maximal attracting petals and (one of) the critical point(s) on the boundary is called the closest critical point
and denoted c1. The other critical point is then called the second critical point and denoted c2. The critical values under
fσ are denoted v1 and v2 respectively. Normalize the Fatou coordinate φσ so that φσ (c1) = 0 and φσ ◦ fσ = 1/q + φσ . Let

U 0
ω = ⋃q−1

j=0 P j
0 be the maximal attracting petals for Pω , and U 0

σ = ⋃q−1
j=0 P j

σ ,0 the maximal attracting petals for fσ . Further,

let Un
σ = f −n

σ (U 0
σ ) and U n

ω = P−n
ω (U 0

ω). The map χω is constructed via a dynamical conjugacy:

Lemma 3.2. For all non-degenerate parabolic fσ ∈ Rω there exists a continuous conjugacy ησ,ω : Uσ → Λ̃ω between fσ and Pω ,

so that ησ,ω(P j
σ ,0) = P j

0 for j ∈ {0, . . . ,q − 1}. The domain Uσ = Un
σ for some n ∈ N ∪ {0} and Uσ contains both critical values v1

and v2 . The conjugacy ησ,ω is holomorphic in Uσ .

Proof. Let fσ ∈ Rω . Recall that φω and φσ are Fatou coordinates for Pω and fσ respectively. The map ησ,ω = φ−1
ω ◦ φσ :

U 0
σ → U 0

ω , constructed so that ησ,ω(P j
σ ,0) = P j

0 for all j ∈ {0, . . . ,q − 1}, is a homeomorphism, conformal in U 0
σ and it

conjugates fσ to Pω . If v2 ∈ U 0
σ then Uσ = U 0

σ and the proof is done. If not, there exists N > 0 so that v2 ∈ U N
σ \ U N−1

σ and

the conjugacy extends, by iterated lifting with respect to the dynamics, to a conjugacy ησ,ω : U N
σ → U N

ω . Each lift is chosen
to agree with the previous map on their common domain of definition. �
Lemma 3.3. For all non-degenerate parabolic fσ ∈ Rω , ησ,ω(v2) ∈ Λ̃ω \ S p .

Sketch of Proof. The proof is by contradiction. Assume ∃ fσ ∈ Rω so that ησ,ω(v2) ∈ Λ̃ω ∩ S p . Let U = Un
σ be the maximal

domain of the conjugacy ησ,ω , so that v1, v2 ∈ U , and V = Ĉ \ U ∼= D. Hence fσ has two univalent inverse branches
f −1
σ : V → V . Let P denote the union of q repelling petals at the parabolic fixed point z0, sufficiently small so that P ⊂

f −1
σ (V ) ⊂ V . If fσ ∈ Rω so that ησ,ω(v2) ∈ Λ̃ω ∩ S p , then f −1

σ (U ) separates α from its co-preimage α′ , and P is then
contained in the image of one of the inverse branches f −1

σ : V → V . But then this inverse branch has an attracting q-cycle
on the ideal boundary, contradicting the Denjoy–Wolff theorem. �
Strategy of Proof of Theorem 3.1. Definition of the map χω . Let fσ ∈ Rω , with second critical value v2. If fσ is degenerate
parabolic, then it has two q-cycles of components as immediate basin, with each cycle containing a critical point. In this case
choose one of the critical points to be the closest critical point c1, and name the components in the corresponding cycle
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B0, . . . , Bq−1 counter-clockwise, so that B0 contains the critical point c1. The components of the other q-cycle will be named
counter-clockwise so that the component B ′

j is the component between B j and B( j+1) mod q . The map χω : Rω → Λ̂ω is
defined by:

χω(σ ) =
{

πω ◦ ησ,ω(v2) if σ non-degenerate,

πω(α̂ j) if σ degenerate and v2 ∈ B ′
j.

(2)

The map is well defined by Lemmas 3.2 and 3.3, and by the equivalence relation ∼p/q , which identifies the images ησ,ω(v2)

and α̂ j ’s respectively, in the cases where there is an ambiguity in the choice of v2. That the map χω is holomorphic in the
interior will follow from holomorphic dependence of the Fatou coordinate φσ on the parameter σ .

Injectivity follows by a classical pull-back argument, see for example [2] and [5], adapted to the parabolic situation.
Surjectivity is proved by constructing a sequence of polynomial-like maps fn ∈ Per1(λn), with λn ∈ D

∗ , λn → ω radially, so
that the limiting map fσ ∈ Per1(ω) has the correct position of the second critical value. This is done by using results from
[1] on the escape loci in Per1(λ) and results on convergence of polynomial basins, built upon the star-construction from [4].
Continuity of the map (χω)−1 on compact subsets of the bubble-tree is proved by using that the map ησ,ω preserves the
combinatorial structure of the bubble-tree. �

Following Wittner’s conjecture on the slice Per2(0) [8], and revising a folklore conjecture on parabolic parameter slices,
the theorem leads to the conjecture that Per1(e2π ip/q) can be understood as the mating of Λ̂ω with a truncated Mandelbrot
set, M \ L−p/q , so that the bifurcation locus in Per1(e2π ip/q) is homeomorphic to the mating of ∂Λ̂ω with ∂(M \ L−p/q).
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