

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Functional Analysis/Probability Theory

BV functions in a Gelfand triple and the stochastic reflection problem on a convex set of a Hilbert space $^{\updownarrow}$

Fonctions BV dans triplet de Gelfand et le problème de réflexion sur un ensemble convexe d'un espace de Hilbert

Michael Röckner^a, Rongchan Zhu^b, Xiangchan Zhu^c

^a Department of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany

^b Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

^c School of Mathematical Sciences, Peking University, Beijing 100871, China

ARTICLE INFO

Article history: Received 4 June 2010 Accepted after revision 8 October 2010 Available online 27 October 2010

Presented by the Editorial Board

ABSTRACT

In this Note we introduce BV functions in a Gelfand triple, which is an extension of BV functions in Ambrosio et al., preprint [1], by using Dirichlet form theory. By this definition, we can consider the stochastic reflection problem associated with a self-adjoint operator A and a cylindrical Wiener process on a convex set Γ . We prove the existence and uniqueness of a strong solution of this problem when Γ is a regular convex set. The result is also extended to the non-symmetric case. Finally, we extend our results to the case when $\Gamma = K_{\alpha}$, where $K_{\alpha} = \{f \in L^2(0, 1) \mid f \ge -\alpha\}, \alpha \ge 0$.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette Note, on introduit des fonctions BV dans un triplet de Gelfand qui est une extension de fonctions BV dans Ambrosio et al., preprint [1] en utilizant la forme de Dirichlet. Par cette définition, on peut considérer le problème de réflexion stochastique associé à un opérateur auto-adjoint *A* et un processus de Wiener cylindrique sur un ensemble convexe Γ . Nous démontrons l'existence et l'unicité d'une solution forte de ce problème si Γ et un ensemble convexe régulier. Le résultat est aussi étendu au cas non symétrique. Finalement, nous utilisons les fonctions BV dans le cas $\Gamma = K_{\alpha}$, où $K_{\alpha} = \{f \in L^2(0, 1) \mid f \ge -\alpha\}, \alpha \ge 0.$

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Dirichlet form and BV functions

Given a real separable Hilbert space H (with scalar product $\langle \cdot, \cdot \rangle$ and norm denoted by $|\cdot|$), assume that:

Hypothesis 1.1. $A : D(A) \subset H \to H$ is a linear self-adjoint operator on H such that $\langle Ax, x \rangle \ge \delta |x|^2, \forall x \in D(A)$, for some $\delta > 0$. Moreover, A^{-1} is of trace class. $\{e_j\}$ is an orthonormal basis in H consisting of eigen-functions for A, that is, $Ae_j = \alpha_j e_j$, $j \in \mathbb{N}$, where $\alpha_j \ge \delta$.

^{*} Research supported by 973 project, NSFC, key Lab of CAS, the DFG through IRTG 1132 and CRC 701 and the I. Newton Institute, Cambridge, UK. *E-mail addresses:* roeckner@mathematik.uni-bielefeld.de (M. Röckner), zhurongchan@126.com (R.C. Zhu), zhuxiangchan@126.com (X.C. Zhu).

In the following $D\varphi: H \to H$ is the Fréchet-derivative of a function $\varphi: H \to \mathbb{R}$. By $C_b^1(H)$ we shall denote the set of all bounded differentiable functions with continuous and bounded derivatives. For $K \subset H$, the space $C_b^1(K)$ is defined as the space of restrictions of all functions in $C_b^1(H)$ to the subset K. μ will denote the Gaussian measure in H with mean 0 and covariance operator $Q := \frac{1}{2}A^{-1}$. For $\rho \in L_+^1(H, \mu)$, we consider $\mathcal{E}^{\rho}(u, v) = \frac{1}{2}\int_H \langle Du, Dv \rangle \rho(z)\mu(dz), u, v \in C_b^1(F)$, where $F = \text{Supp}[\rho \cdot \mu]$ and $L_+^1(H, \mu)$ denotes the set of all non-negative elements in $L^1(H, \mu)$. Let QR(H) be the set of all functions $\rho \in L_+^1(H, \mu)$ such that $(\mathcal{E}^{\rho}, C_b^1(F))$ is closable on $L^2(F; \rho \cdot \mu)$. Its closure is denoted by $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$.

Theorem 1.2. Let $\rho \in QR(H)$. Then $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$ is a quasi-regular local Dirichlet form on $L^{2}(F; \rho \cdot \mu)$ in the sense of [6, IV, Definition 3.1].

By virtue of Theorem 1.2 and [6], there exists a diffusion process $M^{\rho} = (X_t, P_z)$ on F associated with the Dirichlet form $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$. M^{ρ} will be called distorted OU process on F. Since constant functions are in \mathcal{F}^{ρ} and $\mathcal{E}^{\rho}(1, 1) = 0$, M^{ρ} is recurrent and conservative. Let $A_{1/2}(x) := \int_0^x (\log(1+s))^{1/2} ds, x \ge 0$, and let ψ be its complementary function, namely, $\psi(y) := \int_0^y (A'_{1/2})^{-1}(t) dt = \int_0^y (\exp(t^2) - 1) dt$. Define $L(\log L)^{1/2} := \{f \mid A_{1/2}(\mid f \mid) \in L^1\}$, $L^{\psi} := \{g \mid \psi(c \mid g \mid) \in L^1 \text{ for some } c > 0\}$ (cf. [7]). Let $c_j, j \in \mathbb{N}$, be a sequence in $[1, \infty)$. Define $H_1 := \{x \in H \mid \sum_{j=1}^{\infty} \langle x, e_j \rangle^2 c_j^2 < \infty\}$, equipped with the inner product $\langle x, y \rangle_{H_1} := \sum_{j=1}^{\infty} c_j^2 \langle x, e_j \rangle \langle y, e_j \rangle$. Then clearly $(H_1, \langle , \rangle_{H_1})$ is a Hilbert space such that $H_1 \subset H$ continuously and densely. Identifying H with its dual we obtain the continuous and dense embeddings $H_1 \subset H (\equiv H^*) \subset H_1^*$. It follows that $H_1(z, v)_{H_1^*} = \langle z, v \rangle_H, \forall z \in H_1, v \in H$, and that (H_1, H, H_1^*) is a Gelfand triple. We also introduce a family of H-valued function on H by

$$(C_b^1)_{D(A)\cap H_1} = \left\{ G: \ G(z) = \sum_{j=1}^m g_j(z) l^j, \ g_j \in C_b^1(H), \ l^j \in D(A) \cap H_1 \right\}.$$

Denote by D^* the adjoint of $D: C_b^1(H) \subset L^2(H, \mu) \to L^2(H, \mu; H)$. For $\rho \in L(\log L)^{1/2}(H, \mu)$, we put $V(\rho) := \sup_{G \in (C_b^1)_{D(A) \cap H_1, \|G\|_{H_1} \leq 1} \int_H D^*G(z)\rho(z)\mu(dz)$. A function ρ on H is called a BV function in the Gelfand triple (H_1, H, H_1^*) (denoted $\rho \in BV(H, H_1)$ in notation), if $\rho \in L(\log L)^{1/2}(H, \mu)$ and $V(\rho)$ is finite. When $H_1 = H = H_1^*$, this coincides with the definition of BV functions defined in [1] and clearly $BV(H, H) \subset BV(H, H_1)$. This definition is a modification of BV function in abstract Wiener space introduced in [3] and [4].

Theorem 1.3. (i) Suppose $\rho \in BV(H, H_1) \cap L^1_+(H, \mu)$, then there exist a positive finite measure $||d\rho||$ on H and a Borel-measurable map $\sigma_{\rho} : H \to H^*_1$ such that $||\sigma_{\rho}(z)||_{H^*_1} = 1 ||d\rho||$ -a.e., $V(\rho) = ||d\rho||(H)$,

$$\int_{H} D^{*}G(z)\rho(z)\mu(dz) = \int_{H} {}_{H_{1}} \langle G(z), \sigma_{\rho}(z) \rangle_{H_{1}^{*}} \|d\rho\|(dz), \quad \forall G \in (C_{b}^{1})_{D(A)\cap H_{1}}.$$
(1.1)

Further, if $\rho \in QR(H)$, $||d\rho||$ is \mathcal{E}^{ρ} -smooth, also, σ_{ρ} and $||d\rho||$ are uniquely determined.

(ii) Conversely, if Eq. (1.1) holds for $\rho \in L(\log L)^{1/2}(H, \mu)$ and for some positive finite measure $||d\rho||$ and a map σ_{ρ} with the stated properties, then $\rho \in BV(H, H_1)$ and $V(\rho) = ||d\rho||(H)$.

Theorem 1.4. Let $\rho \in QR(H) \cap BV(H, H_1)$ and consider the measure $||d\rho||$ and σ_ρ from Theorem 1.3(i). Then there is an \mathcal{E}^{ρ} -exceptional set $S \subset F$ such that $\forall z \in F \setminus S$, under P_z there exists an \mathcal{M}_t -cylindrical Wiener process W^z , such that the sample paths of the associated distorted OU-process M^{ρ} on F satisfy the following: for $l \in D(A) \cap H_1$

$$\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW_s^z \rangle + \frac{1}{2} \int_0^t H_1 \langle l, \sigma_\rho(X_s) \rangle_{H_1^*} dL_s^{\|d\rho\|} - \int_0^t \langle Al, X_s \rangle ds, \quad \forall t \ge 0, \ P_z \text{-}a.s.$$

Here $L_t^{\|\mathbf{d}\rho\|}$ is the real valued PCAF associated with $\|\mathbf{d}\rho\|$ by the Revuz correspondence.

2. Reflected OU process

Consider the situation when $\rho = I_{\Gamma}$, the indicator of a set.

Remark 2.1. We emphasize that if Γ is a convex closed set in H, then for each $z, l \in H$ the set $\{s \in \mathbb{R} \mid z + sl \in \Gamma\}$ is a closed interval in \mathbb{R} , whose indicator function hence trivially has the Hamza property. Hence, in particular, $I_{\Gamma} \in QR(H)$.

2.1. Reflected OU processes on regular convex set

Denote the corresponding objects σ_{ρ} , $\|dI_{\Gamma}\|$ in Theorem 1.3(i) by $-\mathbf{n}_{\Gamma}$, $\|\partial\Gamma\|$, respectively.

Hypothesis 2.1.1. There exists a convex C^{∞} function $g: H \to R$ with g(0) = 0, g'(0) = 0, and D^2g strictly positively definite, that is, $\langle D^2g(x)h, h \rangle \ge \gamma |h|^2$, $\forall h \in H$, where $\gamma > 0$, such that

$$\Gamma = \{ x \in H \colon g(x) \leq 1 \}, \qquad \partial \Gamma = \{ x \in H \colon g(x) = 1 \}$$

Moreover, we also suppose that D^2g is bounded on Γ . Finally, we also suppose that g and all its derivatives grow at infinity at most polynomially.

By using [2, Lemma 2.1], we have (1.1) for $\rho = I_{\Gamma}$ with $H = H_1$. By the continuity property of surface measure given in [5], we have the following two theorems.

Theorem 2.1.2. Assume Hypothesis 2.1.1. Then $I_{\Gamma} \in BV(H, H) \cap QR(H)$.

Theorem 2.1.3. Assume Hypothesis 2.1.1. Then there exists an \mathcal{E}^{ρ} -exceptional set $S \subset F$ such that $\forall z \in F \setminus S$, under P_z there exists an \mathcal{M}_t -cylindrical Wiener process W^z , such that the sample paths of the associated reflected OU-process M^{ρ} on F with $\rho = I_{\Gamma}$ satisfy the following: for $l \in D(A)$

$$\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW_s^z \rangle - \frac{1}{2} \int_0^t \langle l, \mathbf{n}_\Gamma(X_s) dL_s^{\|\partial\Gamma\|} \rangle - \int_0^t \langle Al, X_s \rangle \, \mathrm{d}s, \quad \forall t \ge 0, \ P_z \text{-}a.e.$$

where $\mathbf{n}_{\Gamma} := \frac{Dg}{|Dg|}$ is the exterior normal to Γ , satisfying $\langle \mathbf{n}_{\Gamma}(x), x - y \rangle \ge 0$, for any $y \in \Gamma$, $x \in \partial \Gamma$ and $\|\partial \Gamma\| = \mu_{\partial \Gamma}$, where $\mu_{\partial \Gamma}$ is the surface measure induced by μ (cf. [2,5]).

Let Γ satisfy Hypothesis 2.1.1 and A satisfy Hypothesis 1.1. Consider the following stochastic differential inclusion in the Hilbert space H,

$$\begin{cases} dX(t) + (AX(t) + N_{\Gamma}(X(t))) dt \ni dW(t) \\ X(0) = x \end{cases}$$
(2.1)

where W(t) is a cylindrical Wiener process in H on a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ and $N_{\Gamma}(x)$ is the normal cone to Γ at x.

Definition 2.1.4. A pair of continuous $H \times R$ valued and \mathcal{F}_t -adapted processes $(X(t), L(t)), t \in [0, T]$, is called a solution of (2.1) if the following conditions hold:

- (i) $X(t) \in \Gamma$, *P*-a.s. for all $t \in [0, T]$,
- (ii) *L* is an increasing process with the property $\int_0^t I_{\partial\Gamma}(X_s(\omega)) dL_s(\omega) = L_t(\omega)$, $t \ge 0$, and we have for any $l \in D(A)$, $\langle l, X_t(\omega) - x \rangle = \langle l, W_t(\omega) - \int_0^t \mathbf{n}_{\Gamma}(X_s(\omega)) dL_s(\omega) \rangle - \langle Al, \int_0^t X_s(\omega) ds \rangle$ where \mathbf{n}_{Γ} is the exterior normal to Γ , satisfying $\langle \mathbf{n}_{\Gamma}(x), x - y \rangle \ge 0$, $\forall y \in \Gamma$, $x \in \partial \Gamma$.

Theorem 2.1.5. If Γ satisfies Hypothesis 2.1.1, then there exists M, $I_{\Gamma} \cdot \mu(M) = 1$, such that for every $x \in M$, (2.1) has a pathwise unique continuous strong solution in the sense of Definition 2.1.4. Moreover $X(t) \in M$ for all $t \ge 0$, P_x -a.s.

Remark 2.1.6. We can extend all these results to non-symmetric Dirichlet forms obtained by first order perturbation of the above Dirichlet form.

2.2. Reflection OU processes on a class of convex sets

Now we consider the case when $H = L^2(0, 1)$, $\rho = I_{K_\alpha}$, where $K_\alpha = \{f \in H \mid f \ge -\alpha\}$, $\alpha \ge 0$, and $A = -\frac{1}{2}\frac{d^2}{dr^2}$ with Dirichlet boundary condition on [0, 1]. Take $c_j = (j\pi)^{\frac{1}{2}+\varepsilon}$ if $\alpha > 0$, $c_j = (j\pi)^{\beta}$ if $\alpha = 0$, where $\varepsilon \in (0, \frac{3}{2}]$ and $\beta \in (\frac{3}{2}, 2]$ respectively. Then $D(A) \subset H_1$ continuously for all $\alpha \ge 0$. By using [8, (1), (2)], we can prove the following theorem.

Theorem 2.2.1. $I_{K_{\alpha}} \in BV(H, H_1) \cap QR(H)$.

Remark 2.2.2. It has been proved by Guan Qingyang that $I_{K_{\alpha}}$ is not in BV(H, H). Since we have Theorem 2.2.1, we denote the corresponding objects σ_{ρ} , $\|dI_{K_{\alpha}}\|$ in Theorem 1.3(i) by n_{α} , $|\sigma_{\alpha}|$, respectively.

Theorem 2.2.3. Let $\rho = I_{K_{\alpha}}$. Then there is an \mathcal{E}^{ρ} -exceptional set $S \subset F$ such that $\forall z \in F \setminus S$, under P_z there exists an \mathcal{M}_t -cylindrical Wiener process W^z , such that the sample paths of the associated distorted OU-process M^{ρ} on F satisfy the following: for $l \in D(A)$

$$\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW_s \rangle + \frac{1}{2} \int_0^t {}_{H_1} \langle l, n_\alpha(X_s) \rangle_{H_1^*} dL_s^{|\sigma_\alpha|} - \int_0^t \langle Al, X_s \rangle ds, \quad P_z\text{-}a.e.$$

Here, $L_t^{|\sigma_{\alpha}|}(\omega)$ is a real valued PCAF associated with $|\sigma_{\alpha}|$ by the Revuz correspondence, satisfying $I_{\{X_s+\alpha\neq 0\}} dL_s^{|\sigma_{\alpha}|} = 0$, and for every $z \in F$, $P_z[X_t \in C_0[0, 1]$ for a.e. $t \in [0, \infty)] = 1$.

Acknowledgement

We thank Zhiming Ma for very helpful hints and comments.

References

- [1] L. Ambrosio, G. Da Prato, D. Pallara, BV functions in a Hilbert space with respect to a Gaussian measure, preprint.
- [2] V. Barbu, G. Da Prato, L. Tubaro, Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert spaces, The Annals of Probability 4 (2009) 1427–1458.
- [3] M. Fukushima, BV functions and distorted Ornstein–Uhlenbecl processes over the abstract Wiener space, Journals of Functional Analysis 174 (2000) 227–249.
- [4] M. Fukushima, Masanori Hino, On the space of BV functions and a related stochastic calculus in infinite dimensions, Journals of Functional Analysis 183 (2001) 245–268.
- [5] P. Malliavin, Stochastic Analysis, Springer, Berlin, 1997.
- [6] Z.M. Ma, M. Röckner, Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Springer-Verlag, Berlin/Heidelberg/New York, 1992.
- [7] M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Dekker, New York, 1991.
- [8] L. Zambotti, Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probability Theory Related Fields 123 (2002) 579–600.