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Most known lower bounds on the spectral gap of the Laplacian using Ricci curvature
are based on the infimum of the Ricci curvature, and can be really poor when the Ricci
curvature is large everywhere but on a small subset on which it is small. Here we show
that the harmonic mean of the Ricci curvature is a lower bound on the spectral gap of the
Laplacian, which partially solves the problem (unfortunately, we have to assume that the
Ricci curvature is everywhere nonnegative).

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La plupart des minorants connus pour le trou spectral du laplacien faisant intervenir la
courbure de Ricci sont basés sur l’infimum de cette courbure, et peuvent être de piètre
qualité si la courbure de Ricci est élevée partout sauf sur un petit sous-ensemble sur
lequel elle est faible. On montre ici que la moyenne harmonique de la courbure de Ricci
est un minorant du trou spectral du laplacien, ce qui résout partiellement le problème
(malheureusement, il faut supposer que la courbure de Ricci est partout positive ou nulle).

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This article deals with a lower bound on the spectral gap λ1 of the Laplacian operator for compact Riemannian manifolds
without boundary, using Ricci curvature. Here we will take the convention

� f = gij∇2
i j f

for the Laplacian operator. One of the numerous interests of estimating this spectral gap is that it gives the speed of
convergence to the equilibrium of the Brownian motion on the manifold. In [4], Berger devotes an entire chapter to the
study of the spectrum of the Laplacian.

The simplest bound of λ1 by the Ricci curvature was obtained by Lichnerowicz [7] in the case of positive Ricci curvature:
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Theorem 1.1. Let M be a complete connected n-dimensional Riemannian manifold with positive Ricci curvature. Let κ be the infimum
of the Ricci curvature, then we have:

λ1 � n

n − 1
κ.

Chen and Wang found better bounds for λ1, using the infimum of the Ricci curvature and the diameter of the manifold
(see [5]):

Theorem 1.2. Let M be a compact connected n-dimensional Riemannian manifold, K be the infimum of the Ricci curvature on M,
and D be the diameter of M. Then, if K � 0, we have the following bounds:

λ1 � π2

D2
+ max

(
π

4n
,1 − 2

π

)

and when n > 1,

λ1 � nK

(n − 1)(1 − cosn(
D

√
K (n−1)

2 ))
.

If K � 0, we have the following bounds:

λ1 � π2

D2
+

(
π

2
− 1

)
K

and when n > 1,

λ1 �
π2

√
1 − 2D2 K

π4

D2 ch(
D

√−K (n−1)
2 )

.

In a recent work, [1], Aubry gives a lower bound of λ1 when the Ricci curvature is approximately constant in L p norm
for p large enough (> n

2 ).
The main theorem of this article is the following one:

Theorem 1.3. Let M be a compact connected Riemannian manifold without boundary, with nonnegative Ricci curvature. Then the
following inequality holds:

1

λ1
�

∫
M

dμ(x)

κ(x)

where μ is the renormalized volume measure (dμ = dvol
vol(M)

), and κ(x) = infv∈Tx M,‖v‖=1(Ric(v, v)).

The bound on the spectral gap given by this theorem is the harmonic mean of the infimum of the Ricci curvature on
every direction. It can be better than the estimates based on the infimum of the Ricci curvature on the manifold, when
the Ricci curvature is small on a set of small measure, and large everywhere else. Unfortunately, this does not work with
negative curvature.

2. Proof of the main theorem

Let f be an eigenfunction of � for the eigenvalue −λ1. The existence of f is obtained by minimizing
∫

M ‖∇u‖2 dvol
on the set {u ∈ H1

2(M),
∫

M u2 dvol = 1,
∫

M u dvol = 0}, the Rellich–Kondrakov theorem proves that the infimum is reached.
We refer to [6] for the regularity issues.

We define h(x) = ‖∇ f (x)‖, and u(x) = ∇ f (x)
h(x) if ∇ f (x) �= 0.

We have 〈∇ f ,∇(� f )〉 = −λ1h2.
The Böchner–Weitzenböck formula can be found in [4]. It states that:

1

2
�

(‖∇ f ‖2) = Ric(∇ f ,∇ f ) + 〈∇(� f ),∇ f
〉 + ∥∥∇2 f

∥∥2
.

At each point where h does not vanish, we have:

Ric(∇ f ,∇ f ) = h2Ric(u, u) � κh2
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and ∥∥∇2 f
∥∥2 = ‖h∇u + ∇h.u‖2 = h2‖∇u‖2 + ‖∇h‖2 + 2gij gklh∇iuk + ∇ jhul.

Differentiating gklukul = 1, we get gkl∇ j(uk)ul = 0. So we have:
∥∥∇2 f

∥∥2 = ‖∇h‖2 + h2‖∇u‖2 � ‖∇h‖2.

By integration over M of the Böchner–Weitzenböck formula, we have:

0 =
∫

M

1

2
�

(
h2)dμ �

∫
M

κh2 − λ1h2 + ‖∇h‖2 dμ

(the integration on the set where h vanishes is 0). By the Poincaré inequality, we get:

0 �
∫

M

(κ − λ1)h
2 dμ + λ1

[∫
M

h2 dμ −
(∫

M

h dμ

)2]
�

∫
M

κh2 dμ − λ1

∫
M

κh2 dμ

∫
M

dμ

κ

where the second inequality follows from the Cauchy–Schwarz inequality applied to
∫

M h
√

κ. 1√
κ

dμ. We can assume that

κ > 0, μ-almost surely, otherwise there is nothing to prove. Since f is smooth and non-constant, h is not 0 μ-almost surely,
and then

∫
M κ(x)h2(x)dμ(x) > 0, so we get:

0 � 1 − λ1

∫
M

dμ(x)

κ(x)

which was to be proved.

3. A generalization of the main theorem

A similar estimate for the spectral gap can be proved in a similar way for reversible diffusions, whose generator has the
form:

L( f ) = � f + 〈∇ f ,∇ϕ〉.
Here we use the generalized notion of curvature developed by Bakry and Emery [2,3], that we recall in the following
definitions:

Definition 3.1. Let L be the generator of a Markovian process. The carré du champ operator is defined by the formula:

Γ ( f , g) = 1

2

[
L( f g) − f L(g) − L( f )g

]
.

The iterated carré du champ operator is defined in the same way, except that we put Γ instead of the product of two
functions:

Γ2( f , g) = 1

2

[
L
(
Γ ( f , g)

) − Γ
(

f , L(g)
) − Γ

(
L( f ), g

)]
.

Remark 1. In our case, we have Γ ( f , f ) = ‖∇ f ‖2, which is why it is called “carré du champ”. We also have Γ2( f , f ) =
(Ric − ∇2ϕ)(∇ f ,∇ f ) + ‖∇2 f ‖2.

Definition 3.2. We say that a Markovian operator L satisfies a curvature-dimension inequality CD(ρ,n′) if and only if

Γ2( f , f )(x) � ρ(x)Γ ( f , f )(x) + 1

n′(x)

(
L( f )(x)

)2

holds for every regular enough f .

Remark 2. In our settings, for having the CD(ρ,n′) inequality, we must have 1
n′ � 1

n , and equality may occur only at points

where ∇ϕ = 0. For a given n′ , the optimal ρ is ρ(x) = infv∈Tx M,‖v‖=1[Rici j − ∇2
i jϕ − 1

n′−n (∇iϕ∇ jϕ)]vi v j .

Theorem 3.3. Let M be a compact connected n-dimensional Riemannian manifold, and ϕ a smooth function from M to R. Let L be
the diffusion operator defined by:

L f = � f + 〈∇ϕ,∇ f 〉.
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Let ν = eϕvol∫
M eϕ dvol(x)

be the reversible probability measure associated to the diffusion. Let λ1 be the spectral gap of L. Assume that L

satisfies a curvature-dimension inequality CD(ρ,n′), with n′ constant and positive (so greater than n, and possibly +∞) whereas ρ
may vary as a function of M. If infM ρ � 0, then we have:

∀0 � c � inf
M

κ, λ1 � n′

n′ − 1
c + 1∫

M
dν

ρ−c

.

The proof of this theorem in the special case n′ = ∞ is very similar of the one of Theorem 1.3. We just have to replace
� with L, and μ with ν . For the general case, we make the suitable convex combination of the inequality

∫
M ρh2 dν −

λ1(
∫

M h dν)2 � 0, obtained in the case n′ = ∞ with a better ρ , and of the more classical one
∫

M(ρ − λ1
n′−1

n′ )h2 dν � 0,
and thereafter use the Cauchy–Schwarz inequality to get the result.

Remark 3. The function c �→ n′
n′−1 c + 1∫

M
dν

ρ(x)−c

is concave on the interval [0, infρ], so the optimal c is

• 0 when Varν( 1
ρ ) � 1

n−1 (Eν [ 1
ρ ])2;

• infρ when Varν( 1
ρ−infρ ) � 1

n−1 (Eν [ 1
ρ−infρ ])2 or ν(ρ = infρ) � n−1

n ;
• somewhere in the interior of the interval [0, infρ] in the other cases.

So all the values of c in the interval are useful in our theorem, and not only the extremal ones.
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