Algebra/Algebraic Geometry

Isotropy of symplectic involutions

Isotropie d'involutions symplectiques

Nikita A. Karpenko ${ }^{1}$
UPMC Univ. Paris 06, Institut de Mathématiques de Jussieu, 4, place Jussieu, 75252 Paris cedex 05, France

A R T I C L E I N F O

Article history:

Received 8 May 2010
Accepted 5 October 2010
Available online 27 October 2010
Presented by Jean-Pierre Serre

Abstract

We prove the symplectic analogue of the isotropy theorem for orthogonal involutions. We apply (a modification of) a method due to J.-P. Tignol originally applied to prove the symplectic analogue of the hyperbolicity theorem for orthogonal involutions. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Nous démontrons l'analogue symplectique du théorème d'isotropie des involutions orthogonales. Nous utilisons (une modification de) la méthode due à J.-P. Tignol initialement utilisée pour démontrer l'analogue symplectique du théorème d'hyperbolicité des involutions orthogonales. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

We refer to [7] for terminology and basic facts concerning involutions on central simple algebras. Below, we'll meet myriads of finite odd degree field extensions; we simply call them odd for short.

In this Note we prove

Theorem 1. Let F be a field of characteristic not 2, A a central simple F-algebra, σ a symplectic involution on A. The following two conditions are equivalent:
(1) σ becomes isotropic over any field extension E / F such that ind $A_{E}=2$;
(2) σ becomes isotropic over some odd extension of F.
(We recall that σ is always isotropic and, moreover, hyperbolic as far as ind $A=1$.)
Theorem 1 is the symplectic analogue of the following result on orthogonal involutions:

Theorem 2. (See [5, Theorem 1].) Let F be a field of characteristic not 2, A a central simple F-algebra, τ an orthogonal involution on A. The following two conditions are equivalent:
(1) τ becomes isotropic over any field extension E / F such that ind $A_{E}=1$;
(2) τ becomes isotropic over some odd extension of F.

[^0]The symplectic analogue of an earlier and weaker than Theorem 2 result [4, Theorem 1.1] concerning hyperbolicity of orthogonal involution has been obtained by J.-P. Tignol in [8, Theorem 1]. We prove (the "difficult" part (1) \Rightarrow (2) of) Theorem 1 by a slight modification of Tignol's method. The necessity of modification comes from the presence of odd extensions in the "isotropy business" and from their absence (due to [7, Corollary 6.16]) in the "hyperbolicity business". Note that a different modification, making use of valuations on quaternion skew fields, has been suggested by J.-P. Tignol himself. In contrast to this, our modification makes use of valuations on fields and is contained in Corollary 7, a statement on a field of Laurent series which has nothing to do with central simple algebras or involutions.

Let us explain the characteristic assumption char $F \neq 2$. Deducing Theorem 1 from Theorem 2, we need the characteristic assumption in order to reduce to a perfect base field, the need of a perfect field coming from Remark 8. Recall that anyway, the characteristic assumption is needed in the proof of Theorem 2 itself, because it exploits the Steenrod operations on the Chow groups modulo 2 which (the operations) are not available in characteristic 2 .

We are going to use several lemmas. The first one is elementary and easy, the others come from the classical theory of complete discrete valuation fields.

Lemma 3. (See [6, Lemma 3.3].) Let F be a field, K an odd extension of F, and E an arbitrary field extension of F. Then there exists an odd extension L / E and an F-embedding $K \hookrightarrow L$.

A coefficient field of a discrete valuation field L is a subfield of the valuation ring of L mapped under the residue map onto the residue field of L.

Lemma 4. Let L be a complete discrete valuation field with characteristic 0 residue field, and let F be a subfield of the valuation ring of L. Then L has a coefficient field containing F.

Proof. Since the characteristic of the residue field is 0 (and L is complete), any maximal subfield of the valuation ring of L is a coefficient field [3, Proof of Proposition (5.2), Ch. II]. Therefore we may simply take a maximal subfield containing F.

Lemma 5. Let L be a complete discrete valuation field and assume that $p:=$ char L is a prime. Then
(1) L has a coefficient field;
(2) any coefficient field contains any perfect subfield of the valuation ring;
(3) if the residue of an element of the valuation ring is not a pth power, then this element is contained in some coefficient field.

Proof. (1) is [3, Proposition (5.4), Ch. II].
(2) is similar to [1, Theorem 10 (c)]. I order to prove (2), let us fix some coefficient field. Let a be an element of a perfect subfield F of the valuation ring, b the image of a under the residue map, and c the element of the coefficient field mapped to b. Since F is perfect, a and c are multiplicative representatives (also called Teichmüller representatives) of b [3, definition in (7.1), Ch. I] (this notion makes sense only if the characteristic of the residue field is positive). Therefore $a=c$ by the uniqueness of the multiplicative representatives [3, Proposition (7.1), Ch. I].

To prove (3), let b be an element of the residue field. If b is not a p th power, it can be included in a p-basis [3, definition in (5.3), Ch. II], of the residue field. Therefore, for any representative a of b (in the valuation ring), there exists a coefficient field containing a [3, Proof of Proposition (5.4), Ch. II].

Corollary 6. Let F be a perfect field, x, t variables, and \hat{L} an odd extension of the field $F((x))$. Then there exist a subfield $L \subset \hat{L}$ containing F and odd over F, and an L-identification $L((t))=\hat{L}$ such that the product $x t$ is a square in \hat{L}.

Proof. We supply the field \hat{L} with the (unique) extension v of the x-adic valuation on $F((x))$. We are identifying the totally ordered group $v\left(\hat{L}^{\times}\right)$with \mathbb{Z}. The discrete valuation field \hat{L} is complete [3, Theorem (2.5), Ch. II]. Let L^{\prime} be its residue field. Then L^{\prime} is a finite extension of F, moreover

$$
\left[L^{\prime}: F\right] \cdot v(x)=[\hat{L}: F((x))]
$$

[3, Theorem (2.5), Ch. II]. In particular, the integers $\left[L^{\prime}: F\right]$ and $v(x)$ are odd.
By Lemmas 4 and $5, \hat{L}$ has a coefficient field L containing F. One can L-identify \hat{L} with the field of Laurent series over L in one variable corresponding to any given uniformizing element in \hat{L} (that is, any element in \hat{L} of valuation 1) [3, Corollary (5.2), Ch. I].

Let s be a uniformizing element in \hat{L} and set $t:=s^{v(x)+1} / x$. Then t is also a uniformizing element, and $x t$ is a square in \hat{L}.

Corollary 7. Let F be a perfect field, x, y, t_{x}, t_{y} variables, and \hat{L} an odd extension of the field $F((x))((y))$. Then there exist a subfield $L \subset \hat{L}$ containing F and odd over F, and an L-identification $L\left(\left(t_{x}\right)\right)\left(\left(t_{y}\right)\right)=\hat{L}$ such that the products $x t_{x}$ and $y t_{y}$ are squares in \hat{L}.

Proof. We first consider the case where char $F=0$. In this case we simply apply Corollary 6 twice. Applying it first to the (perfect) field $F((x))$ and the odd extension $\hat{L} / F((x))((y))$, we get a subfield $\check{L} \subset \hat{L}$ containing $F((x))$ and odd over $F((x))$, and an \check{L}-identification $\check{L}\left(\left(t_{y}\right)\right)=\hat{L}$ such that $y t_{y}$ is a square in \hat{L}. Then we apply Corollary 6 for the second time, now to the field F and the odd extension $\check{L} / F((x))$, getting this time a subfield $L \subset \check{L}$ containing F and odd over F, and an L-identification $L\left(\left(t_{x}\right)\right)=\check{L}$ such that $x t_{x}$ is a square in \check{L}. Substituting, we get a required L-identification $L\left(\left(t_{x}\right)\right)\left(\left(t_{y}\right)\right)=\hat{L}$.

Now we assume that $p:=$ char $F>0$. Since the field $F((x))$ is no longer perfect, the above procedure has to be modified. The field \hat{L} is complete with respect to the (unique) extension v of the y-adic valuation on $F((x))((y))$. Let \check{L}^{\prime} be its residue field. Then \check{L}^{\prime} is a finite extension of $F((x))$ and

$$
\left[\check{L}^{\prime}: F((x))\right] \cdot v(y)=[\hat{L}: F((x))((y))] .
$$

In particular, the integers $\left[\check{L}^{\prime}: F((x))\right]$ and $v(y)$ are odd.
Applying Corollary 6 to the perfect field F and the odd extension $\check{L}^{\prime} / F((x))$, we find a subfield $L^{\prime} \subset \check{L}^{\prime}$ containing F and odd over F, and an L^{\prime}-identification $L^{\prime}\left(\left(t_{x}^{\prime}\right)\right)=\check{L}^{\prime}$ such that $x t_{x}^{\prime}$ is a square in $\check{L}^{\prime}: x t_{x}^{\prime}=b^{2}$ for some $b \in \check{L}^{\prime}$. Since t_{x}^{\prime} is not a p th power in $L^{\prime}\left(\left(t_{x}^{\prime}\right)\right)$, for an arbitrary chosen representative t_{x} of t_{x}^{\prime} in the valuation ring of \hat{L} we can find by Lemma 5 a coefficient field of \hat{L} containing t_{x}. Let a be a representative of b. We choose $t_{\chi}:=a^{2} / x$ and write \check{L} for a coefficient field containing this t_{x}. So, \check{L} is a subfield of \hat{L}, and we can find an \check{L}-identification $\check{L}\left(\left(t_{y}\right)\right)=\hat{L}$ such that $y t_{y}$ is a square. Let L be the subfield of the coefficient field \check{L} corresponding to the subfield L^{\prime} of the residue field \check{L}^{\prime} of \check{L}. The field L contains F and is F-isomorphic to L^{\prime}; in particular, L / F is odd. Furthermore, $\check{L}=L\left(\left(t_{x}\right)\right)$. Substituting, we get the identification $L\left(\left(t_{x}\right)\right)\left(\left(t_{y}\right)\right)=\hat{L}$. The product $x t_{x}$ is the square of $a \in \hat{L}$.

Remark 8. The statements of Corollaries 6 and 7 fail for general (imperfect) F.
Proof of Theorem 1. The implication $(2) \Rightarrow(1)$ is an easy consequence of the classical Springer theorem on quadratic forms [2, Corollary 18.5]. Assume that we are given an odd extension L / F such that σ_{L} is isotropic and a field extension E / F such that ind $A_{E}=2$. By Lemma 3, there exists an odd extension $E L$ of E containing L. Let Q be a quaternion E-algebra Brauer-equivalent to A_{E}. We can find a right Q-module V, an isomorphism of E-algebras $E^{2} V \simeq A_{E}$, and a hermitian (with respect to the canonical involution on Q) form h on V such that the involution σ_{E} is adjoint to h. Note that for any $v \in V$, the element $h(v, v) \in Q$ is symmetric and therefore lies in E [7, Proposition (2.6)]. Let q be the quadratic form on the vector E-space V defined by $q(v)=h(v, v)$. We get the following chain of implications: σ_{L} is isotropic $\Rightarrow \sigma_{E L}$ is isotropic $\Rightarrow h_{E L}$ is isotropic $\Rightarrow q_{E L}$ is isotropic \Rightarrow (by the Springer theorem) q is isotropic $\Rightarrow h$ is isotropic $\Rightarrow \sigma_{E}$ is isotropic.

The implication (1) $\Rightarrow(2)$ is proved by the method of [8] and with a help of Corollary 7. Since char $F \neq 2$, we may assume that F is perfect (replacing an imperfect F by its perfect closure). Let $\tilde{F}:=F(x, y)$ be the field of rational functions in variables x and y over F. Let now Q be the quaternion \tilde{F}-algebra $(x, y)_{\tilde{F}}$. Let \tilde{A} be the tensor product of the \tilde{F}-algebras $A_{\tilde{F}}$ and Q endowed with the (orthogonal) involution $\tilde{\sigma}$ defined as the tensor product of $\sigma_{\tilde{F}}$ by the canonical involution on Q.

Let \tilde{E} be the function field of the Severi-Brauer variety of \tilde{A}. Since the algebra $\tilde{A}_{\tilde{E}}$ is split, the algebra $A_{\tilde{E}}$ is Brauerequivalent to the quaternion algebra $Q_{\tilde{E}}$. In particular, ind $A_{\tilde{E}}$ divides 2 . It follows by (1) that the involution $\sigma_{\tilde{E}}$ is isotropic, i.e., $\sigma_{\tilde{E}}(a) \cdot a=0$ for some non-zero element $a \in A_{\tilde{E}}$. The element $b:=a \otimes 1 \in \tilde{A}_{\tilde{E}}$ is also non-zero and satisfies $\tilde{\sigma}_{\tilde{E}}(b) \cdot b=0$. Therefore the orthogonal involution $\tilde{\sigma}_{\tilde{E}}$ is isotropic. Applying Theorem 2, we get an odd extension \tilde{L} / \tilde{F} such that the involution $\tilde{\sigma}_{\tilde{L}}$ is isotropic.

The field \tilde{F} is a subfield of the field $\hat{F}:=F((x))((y))$. By Lemma 3, there exists an odd extension \hat{L} of \hat{F} containing \tilde{L}. The involution $\tilde{\sigma}_{\hat{L}}$ is isotropic for such \hat{L}. We apply Corollary 7, find the odd field extension L / F and the identification $\hat{L}=L\left(\left(t_{x}\right)\right)\left(\left(t_{y}\right)\right)$. We note that the quaternion algebra $Q_{\hat{L}}=(x, y)_{\hat{L}}$ is isomorphic to $\left(t_{x}, t_{y}\right)_{\hat{L}}$ because $x t_{x}$ and $y t_{y}$ are squares. Now [8, Proposition 1] affirms that σ_{L} is isotropic. This finishes the proof of Theorem 1.

References

[1] I.S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946) 54-106.
[2] R. Elman, N. Karpenko, A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008.
[3] I.B. Fesenko, S.V. Vostokov, Local Fields and Their Extensions, second ed., Translations of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI, 2002 (With a foreword by I.R. Shafarevich).
[4] N.A. Karpenko, Hyperbolicity of orthogonal involutions, Doc. Math. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010) 371-389 (electronic).
[5] N.A. Karpenko, Isotropy of orthogonal involutions, arXiv:0911.4170v2 [math.AG], 31 Jan. 2010, 11 p.
[6] N. Karpenko, A. Merkurjev, Essential dimension of quadrics, Invent. Math. 153 (2) (2003) 361-372.
[7] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998 (with a preface in French by J. Tits).
[8] J.-P. Tignol, Hyperbolicity of symplectic and unitary involutions. Appendix to a paper of N. Karpenko, Doc. Math. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010) 389-392 (electronic).

[^0]: E-mail address: karpenko@math.jussieu.fr.
 URL: http://www.math.jussieu.fr/~karpenko.
 1 Supported by the Max-Planck-Institut für Mathematik in Bonn.

