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In this Note we propose and study a three field mixed formulation for solving the Stokes
problem with Tresca-type nonlinear boundary conditions. Two Lagrange multipliers are
used to enforce div(u) = 0 constraint and to regularize the energy functional. The resulting
problem is discretized using P1 bubble/P1-P1 finite elements. Optimal error estimate is
derived and a numerical validation test is achieved.
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r é s u m é

Dans cette note, nous proposons une formulation mixte à trois champs pour résoudre le
problème de Stokes avec des conditions aux limites non-linéaires, du type Tresca. Deux
multiplicateurs de Lagrange sont utilisés afin d’imposer div(u) = 0 et de régulariser la
fonctionnelle énergie. Le problème résultant est approché à l’aide des éléments finis P1
bulle/P1-P1. Une estimation optimale est obtenue et un test numérique de validation est
réalisé.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The no-slip hypothesis at a fluid–wall interface leads to good agreement with experimental observations for Newtonian
fluids which is no longer true for non-Newtonian fluid [6]. For example, in the flow of certain high molecular weight linear
polymers through circular dies, the exit flow rate has been found to be a discontinuous function of pressure drop over a
certain range of shear rates [3]. This observation is consistent with the hypothesis that the velocity at the wall is not zero.
Several studies have been made and showed not only that slip takes place when a threshold is reached but also it’s the
origin of many defects and instabilities in the polymer injection process [8].

Many papers were published simulating various flows with such boundary conditions (see [7] and references therein).
Recently, based on the penalty method, error estimates for the Stokes problem with Tresca boundary conditions with strong
regularity assumption on the velocity field are obtained [5].

The aim of this work is to contribute to the numerical analysis of Stokes problem with Tresca boundary conditions. Our
first purpose is to carry out the convergence analysis and a priori estimates for the mixed finite element formulation of the
above cited problem. The second one is to derive an algorithm well adapted to this formulation and easy to implement in
order to validate our theoretical estimates.
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The Note is organized as follows. First, we introduce the equations modeling the Stokes problem. Then we establish the
continuous mixed variational formulation is Section 3. The following section is devoted to a priori error estimates, we show
an optimal order of h3/4 with H2(Ω) assumption regularity on the velocity. In Section 5 we validate the theoretical estimate
by a numerical test.

2. Setting Stokes problem with nonlinear boundary conditions

We consider the following Stokes problem with nonlinear boundary conditions of Tresca friction type:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div
(
νε(u)

) + ∇p = f in Ω,

div(u) = 0 in Ω,

u = 0 on Γ0,

un = 0 on Γ,

|σt | < g ⇒ ut = 0 on Γ,

|σt | = g ⇒ ∃k > 0 a constant such that ut = −kσt on Γ,

(1)

with Ω ⊂ R
2 an open set with regular boundary ∂Ω , which is the union of two non-overlapping portions Γ0 and Γ , Γ0 is

subjected to no-slip boundary conditions while Γ is where the fluid may slip. The symbol ε(u) represents the linearized
strain rate tensor ε(u) = 1

2 (∇u + ∇t u). We denote by n the outward unit normal to ∂Ω and un and ut , the normal, the
tangential, component of u respectively. The stress vector σ is equal to σ .n where σ is the Cauchy stress tensor defined by:

σ = 2νε(u) − pδ,

where p is the hydrostatic pressure, δ is the identity tensor and ν is the kinematic fluid viscosity.
One can derive the variational formulation of (1):{

Find u ∈ Vdiv(Ω) such that: ∀v ∈ Vdiv(Ω)

a(u,v − u) + j(v) − j(u) � L(v − u),
(2)

with

V(Ω) = {
v ∈ H1(Ω), v|Γ0 = 0, v.n|Γ = 0

}
, Vdiv(Ω) = {

v ∈ V(Ω), div(v) = 0 in Ω
}

which are endowed by the norm: ‖u‖1 = (
∑2

i=1 ‖ui‖2
H1(Ω)

)1/2.

a(u,v) =
∫
Ω

νε(u):ε(v)dΩ, L(v) =
∫
Ω

f v dΩ, g is a non-negative function in L2(Γ )

and

j(v) =
∫
Γ

g|vt |dΓ ∀u,v ∈ Vdiv(Ω) where | · | is the Euclidian norm in R
2.

Problem (2) has a unique solution [1]. Moreover, since the bilinear form a(·,·) is symmetric, (2) is equivalent to the
following constrained non-differentiable minimization problem:{

Find u ∈ Vdiv(Ω) such that:

J (u) � J (v) ∀v ∈ Vdiv(Ω),
(3)

where J (v) = 1
2 a(v,v) + j(v) − L(v).

3. Mixed formulation

Problem (3) can be written as a saddle point problem which has a unique solution characterized by⎧⎪⎨
⎪⎩

Find
(
u, (p, λ)

) ∈ V(Ω) × Λ such that:

a(u,v) + b
(
(p, λ),v

) = L(v) ∀v ∈ V(Ω),

b
(
(q − p,μ − λ),u

)
� 0 ∀(q,μ) ∈ Λ,

(4)

where

b
(
(p, λ),v

) = −(p,div v) + 〈λ,vt〉 and Λ = L2
0(Ω) × Q, (5)

with
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Q = {
μ ∈ (

L2(Γ )
)
, |μ| � g

}
and L2

0(Ω) =
{

p ∈ L2(Ω),

∫
Ω

p(x)dx = 0

}
.

Lemma 3.1. (See [1].) There exists a constant α > 0 such that: ∀(q,μ) ∈ L2
0(Ω) × L2(Γ )

sup
v∈V

b((q,μ),v)

‖v‖1
� α

(‖q‖L2(Ω) + ‖μ‖− 1
2

)
. (6)

Note that H− 1
2 (Γ ) is the dual space of H

1
2 (Γ ) = {ϕ ∈ L2(Γ ) such that ‖ϕ‖ 1

2 ,Γ
< +∞} which are equipped respectively

by the norms

‖ψ‖ 1
2 ,Γ

=
(

‖ψ‖0,Γ +
∫
Γ

∫
Γ

(ψ(x) − ψ(y))2

|x − y|2 dΓx dΓy

) 1
2

, ‖μ‖− 1
2 ,Γ

= sup

ϕ∈H
1
2 (Γ ),ϕ �=0

〈μ,ϕ〉
‖ϕ‖ 1

2 ,Γ

.

Theorem 3.2. (See [1].) Suppose that a(·, ·) is continuous, V-elliptic bilinear form on V(Ω) and (6) holds. Then there exists a unique
(u, (p, λ)) solution of mixed problem (4).

4. Error estimates

The present section is devoted to finite element approximation of the solution of problem (4). We use classical P1 bubble-
P1 finite element to disretize (u, p) and P1 finite element on Γ for the Lagrange multiplier λ.

The domain Ω is supposed to be polygonal. Let Th be a regular partition of Ω with triangles. We denote by Pn(κ)

the space of polynomials of degree less and equal to n ∈ N defined on κ ∈ Th and by Bκ the space of bubble functions
defined on κ which is a sub-space of H1

0(κ). Then we can define the following discrete spaces: B = ⊕
κ∈Th

Bκ , Vh = {vh ∈
C 0(Ω);vh|κ ∈ P1 ∀κ ∈ Th, vh|Γ0 = 0, and vh.n|Γ = 0}, Vh = [Vh + B]2 and Wh = {vh|Γ , vh ∈ Vh}. Let

Lh =
{

qh ∈ C 0(Ω);qh|κ ∈ P1 ∀κ ∈ Th,

∫
Ω

qh = 0

}
,

Mh = Lh × Wh ,

Qh =
{
μh ∈ Wh,

∫
Γ

μhψh −
∫
Γ

g|ψh| � 0 ∀ψh ∈ Wh

}

and Λh = Lh × Qh .
Note that Qh is an external approximation of Q, so the discretization is non-conforming.
Discretizing (4) we obtain⎧⎪⎨

⎪⎩
Find

(
uh, (ph, λh)

) ∈ Vh × Λh such that:

a(uh,vh) + b
(
(ph, λh),vh

) = L(vh) ∀vh ∈ Vh,

b
(
(qh − ph,μh − λh),uh

)
� 0 ∀(qh,μh) ∈ Λh,

(7)

where Λh is a closed convex of Lh × Wh .
A sufficient condition for the existence and uniqueness of the solution to problem (7) is the inf-sup condition.

Proposition 4.1. (See [1].) There exists a constant β > 0 independent of h such that:

sup
vh∈Vh

b((qh,μh),vh)

‖vh‖1
� β

(‖qh‖L2(Ω) + ‖μh‖− 1
2

) ∀(qh,μh) ∈ Lh × Wh. (8)

Lemma 4.2. (See [2].) Let (u, p, λ) and (uh, ph, λh) be solutions to (4), (7) respectively. Then for any (vh,qh,μh) ∈ Vh × Λh it holds:

a(u − uh,u − uh) � a(u − uh,u − vh) + b
(
(p, λ) − (qh,μh),uh − u

) + b
(
(p, λ) − (ph, λh),u − vh

)
+ b

(
(p, λ) − (qh,μh),u

) + b
(
(ph, λh) − (p, λ),u

)
. (9)
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Table 1
Convergence rates with respect to h.

h ‖u − uh‖0 α0 ‖u − uh‖1 α1 ‖p − ph‖0 αp

1.2500e–03 2.7779e–04 1.225 7.6057e–03 0.729 1.7985e–01 0.256
1.e–03 1.8160e–04 1.247 5.9045e–03 0.742 1.4513e–01 0.279

9.0909e–04 1.5163e–04 1.255 5.3128e–03 0.747 1.3040e–01 0.290
7.6923e–04 1.0930e–04 1.272 4.6551e–03 0.748 1.0512e–01 0.314
5.8824e–04 6.5507e–05 1.295 4.1820e–03 0.736 5.8219e–02 0.382
5.5556e–04 5.8187e–05 1.301 3.6802e–03 0.747 4.9130e–02 0.402

Theorem 4.3. (See [1].) Let (u, p, λ) and (uh, ph, λh) be solutions to (4), (7) respectively. Suppose that u ∈ H2(Ω) and p ∈ H1(Ω).
Then

‖u − uh‖1 + ‖p − ph‖L2(Ω) + ‖λ − λh‖− 1
2

� C(u, p, g)h
3
4 ,

where C(u, p, g) is a positive constant depending only on ‖u‖H2(Ω) , ‖p‖1 and ‖g‖L2(Γ ) .

5. Numerical test

A no-slip 2D Stokes solver [4] is used and Tresca friction boundary conditions were implemented on. The domain Ω is
the square [0,0.1]2, the fluid can slip on Γ = Γupper ∪ Γlower = [0,0.1] × {0.1} ∪ [0,0.1] × {0}, the viscosity is taken equal to
0.1 and 10−6 is chosen as a stopping criterion. We set g = 0.015 which is consistent with experimental values, see [3], and
we enforce parabolic profile on both Γleft and Γright:

u|Γleft = u|Γright =
[

y(1 − y)

−y(1 − y)

]
.

We choose this profile to enforce shear stress near the solid wall to reach the threshold without considering a compli-
cated domain geometry.

Since an explicit solution to such a problem is not available, we calculate the discrete solution with sufficiently refined
mesh, h = 1

2000 , which is taken as the reference solution; next we compute uh , the approximate solution, for different mesh
sizes h and we compare them to the reference solution.

Table 1 provides the variation of ‖u − uh‖L2(Ω) , ‖u − uh‖1 and ‖p − ph‖L2(Ω) with respect to the mesh size respectively.

The first remark one can make is the rate convergence of H1-norm of error on u is equal to 3
4 which is in agreement with

theoretical result. The second one is that in spite of considering very small mesh size, h = 1
1800 , we cannot conclude about

rate convergence of u and p error L2-norms; this issue needs to be investigated.

6. Conclusion

A three field mixed formulation of the Stokes problem with Tresca boundary conditions has been introduced and studied.
The convergence analysis and a priori error estimates of the discrete corresponding problem have been established. In
particular, we show an optimal error estimate of order h = 3

4 for the velocity when it is approximated by classical P1 bubble
finite element. A numerical realization of a model example has been proposed which confirms the theoretical result.
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