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This Note deals with the boundary null-controllability of linear diffusion–reaction equations
in a 2D bounded domain. We transform the determination of the sought HUM boundary
control into the minimization of a continuous and strictly convex functional. In the case
of a rectangular domain where the diffusion tensor is represented by a diagonal matrix,
we establish a procedure based on the inner product method that uses a complete
orthonormal family of Sturm–Liouville’s eigenfunctions to express explicitly the sought
control.
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r é s u m é

Il s’agit de la contrôlabilité frontière à zéro des équations linéaires de type diffusion–
réaction dans un domaine borné de R

2. Nous transformons la détermination du contrôle
de type HUM en la minimisation d’une fonctionnelle continue et strictement convexe. Dans
le cas d’un domaine rectangulaire où le tenseur de diffusion est représenté par une matrice
diagonale, nous exprimons explicitement le contrôle recherché dans une base orthonormée
construite par les fonctions propres d’un problème de Sturm–Liouville.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In the literature, to compute the HUM control authors use generally an infinite matrix as a representation of the ob-
tained controllability operator. Although the direct method is the most used to determine the involved matrix, see [1,2,5,9],
the inner product method constitutes a second option that offers some important advantages such that the no need of
computing any solution to the control system, deducing the control at a new final time using the already computed control
and due to the symmetry, we only need to compute half of the entries, see [10]. In this Note, we address the boundary
null-controllability of linear diffusion–reaction equations. We establish the computation of the sought HUM boundary con-
trol for the general setting. Then, using the inner product method, we determine explicitly the sought control in the case
of a 2D rectangular domain where the longitudinal and transversal diffusion axes coincide with the Cartesian x- and y-axes
which means that the diffusion tensor is represented by a diagonal matrix.

Let Ω be a bounded connected open set of R
2 with a Lipschitz boundary ∂Ω = ΓD ∪ ΓN . For a fixed T > 0, we consider

the following evolution problem governed by a diffusion–reaction equation:
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∂tϕ − div(D∇ϕ) + ρϕ = 0 in Q = Ω × (0, T ),

ϕ(.,0) = ϕ0 in Ω,

ϕ = ψ on
∑

D = ΓD × (0, T ),

D∇ϕ.ν = 0 on
∑

N = ΓN × (0, T ), (1)

where ρ is a positive real number that represents the reaction coefficient, ν is the unit normal vector exterior to ∂Ω and
D is the diffusion tensor given by a 2 × 2 real symmetric matrix. It is well known, see, for example, [11,12], that given an
initial data ϕ0 ∈ H1(Ω) and ψ ∈ L2(0, T ;ΓD ), the problem (1) admits a unique solution ϕ such that ϕ ∈ L2(0, T ; H2(Ω)) ∩
C0(0, T ; H1(Ω)) and ∂tϕ ∈ L2(0, T ; L2(Ω)).

Boundary null-controllability problem. The problem with which we are concerned here is given ϕ0 ∈ H1(Ω), find a control
ψ ∈ L2(0, T ;ΓD) such that the solution ϕ to (1) satisfies ϕ(., T ) = 0 in Ω .

As introduced by J.L. Lions [6,7], the Hilbert Uniqueness Method (HUM) defines the control ψ from the solution to the
adjoint problem associated to (1) defined for a given initial data v0 ∈ H1(Ω) by

−∂t v − div(D∇v) + ρv = 0 in Q = Ω × (0, T ),

v(., T ) = v0 in Ω,

v = 0 on
∑

D = ΓD × (0, T ),

D∇v.ν = 0 on
∑

N = ΓN × (0, T ). (2)

Then, inspired by [10] we introduce the so-called linear complementary boundary operator C as follows:〈
C[v],ψ 〉

L2(ΓD )
= 〈

div(D∇ϕ) − ρϕ, v
〉 + 〈

ϕ,−div(D∇v) + ρv
〉
, (3)

where 〈,〉 denotes the duality product. That leads to define the boundary operator C such that C[v] = −D∇v.ν . The follow-
ing lemma gives a necessary and sufficient condition on a function ψ to be an admissible control:

Lemma 1. Let T > 0 and ϕ0 ∈ H1(Ω) be given. The solution ϕ ∈ L2(0, T ; H2(Ω)) to the problem (1) with a control ψ ∈ L2(0, T ;ΓD)

satisfies ϕ(., T ) = 0 in Ω if and only if〈
ψ, C[v]〉L2(

∑
D )

+ 〈
ϕ0, v(.,0)

〉
L2(Ω)

= 0, (4)

for all v ∈ L2(0, T ; H2(Ω)) solution to the adjoint problem (2) with an initial data v0 ∈ H1(Ω).

Proof. In view of (1)–(3), it is easy to see using Green’s formula that we have

[〈ϕ, v〉L2(Ω)

]T
0 =

T∫
0

(〈∂tϕ, v〉 + 〈ϕ,∂t v〉)dt = 〈
ψ, C[v]〉L2(

∑
D )

. � (5)

To determine the HUM control, we introduce the bilinear form γ : H1(Ω) × H1(Ω) → R such that

γ (v0, z0) = 〈
C[v], C[z]〉L2(

∑
D )

=
T∫

0

∫
ΓD

D∇v.νD∇z.ν dΓ dt, (6)

where z is the solution to (2) with z(., T ) = z0 ∈ H1(Ω), and the functional J : H1(Ω) → R as follows:

J (v0) = 1

2
γ (v0, v0) +

∫
Ω

ϕ0 v(.,0)dΩ. (7)

Theorem 2. Let v̂0 ∈ H1(Ω) be a minimizer of J introduced in (7) and v̂ be the solution to (2) with v̂(., T ) = v̂0 . The HUM control
ψ = C[v̂] = −D∇ v̂.ν solves the boundary null-controllability problem.

Proof. Setting ψ = C[v̂] in the first order optimality condition, we conclude using Lemma 1. �
Moreover, using similar techniques as done in [10], we prove that the functional J introduced in (7) admits a unique

minimizer v̂0. In order to compute the HUM control ψ = C[v̂], we employ the following linear operators [10]: LT : H1(Ω) →
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H1(Ω) such that, to a given ϕ0, associates LT (ϕ0) = ϕ(., T ) the solution to (1) computed with ψ = 0 and taken at t = T .
Then, we also introduce L∗

T : H1(Ω) → H1(Ω) that to a given v0 associates L∗
T (v0) = v(.,0) the solution to (2) taken at

t = 0. Notice that using (5) with ψ = 0 gives〈
ϕ(., T ), v0

〉
L2(Ω)

= 〈
ϕ0, v(.,0)

〉
L2(Ω)

⇔ 〈
LT (ϕ0), v0

〉
L2(Ω)

= 〈
ϕ0, L∗

T (v0)
〉
L2(Ω)

, (8)

which implies that LT and L∗
T are two adjoint operators. In a similar way, we introduce the operators [10]: G T : H1(Ω) →

L2(
∑

D) such that, to a given v0, associates G T (v0) = C[v] where v is the solution to (2) with v(., T ) = v0 and G∗
T :

L2(
∑

D) → H1(Ω) such that, to a given control ψ , associates G∗
T (ψ) = ϕ(., T ) the solution to (1) computed with ϕ0 = 0.

Therefore, in view of (5) we find〈
G∗

T (ψ), v0
〉 = 〈

ϕ(., T ), v(., T )
〉 = 〈

ψ, G T (v0)
〉
. (9)

Thus, G T and G∗
T are also two adjoint operators. Let v̂0 ∈ H1(Ω) be the minimizer of the functional J introduced in (7).

Then, according to the first order optimality condition, we obtain for all v0 ∈ H1(Ω),〈∇ J (v̂0), v0
〉 = 〈

G T (v̂0), G T (v0)
〉
L2(

∑
D )

+ 〈
ϕ0, L∗

T (v0)
〉
L2(Ω)

,

= 〈
G∗

T G T (v̂0), v0
〉
L2(Ω)

+ 〈
LT (ϕ0), v0

〉
L2(Ω)

= 0. (10)

Hence, the minimizer v̂0 of the functional J satisfies

G∗
T G T (v̂0) = −LT (ϕ0) where G∗

T G T : H1(Ω) → H1(Ω). (11)

Inner product method. Let (ei)i�0 be an orthonormal basis of H1(Ω) and A be an infinite matrix that represents the
controllability operator G∗

T G T introduced in (11). Then, using initial data v0 and z0 such that v0 = ei and z0 = e j , we find
according to the bilinear form γ introduced in (6) that γ (ei, e j) = 〈G∗

T G T (ei), e j〉 = 〈Aei, e j〉 which leads to define the
entries of the matrix A as follows:

Aij = 〈Aei, e j〉 =
T∫

0

∫
ΓD

D∇vi .νD∇v j .ν, for all i � 0 and j � 0, (12)

where vi and v j are the solutions to (2) with initial data ei and e j . In the remainder, we consider the case of a rectangular
domain Ω = (0, L) × (0, 
). Here, we denote ΓD the left-side boundary of Ω which coincides with the y-axis and ΓN =
∂Ω \ ΓD . Furthermore, the diffusion tensor D is taken to be a 2 × 2 diagonal matrix with entries D11 > 0 and D22 � 0.
Then, the orthonormal family (ei)i�0 such that for all i � 0,

ei(x, y) = ci sin

(
(2i + 1)

π

2L
x

)
cos

(
i
π



y

)
, where ci =

⎧⎨
⎩

2√

L

if i > 0√
2

L if i = 0

(13)

solves the following Sturm–Liouville’s problem:

−div(D∇ei) + ρei = μiei in Ω,

ei = 0 on ΓD ,

D∇ei .ν = 0 on ΓN , (14)

where for all i � 0, the real number μi = ρ + D11((2i + 1)π/2L)2 + D22(iπ/
)2 denotes the eigenvalue associated to the
eigenfunction ei . Then, by expressing vi the solution to (2) with initial data v0 = ei in the complete orthonormal family
(e j) j�0, we find vi(x, y, t) = e−μi(T −t)ei(x, y). In addition, as the unit normal vector is ν = (−1,0)� on ΓD , we obtain
according to (12) that for all i, j � 0,

Aij = D2
11

T∫
0

e−(μi+μ j)(T −t) dt


∫
0

∂xei(0, y)∂xe j(0, y)dy =
{

(D11π(2i+1))2

4L3μi
(1 − e−2μi T ) if j = i

0 otherwise.

(15)

Besides, in order to determine the right-hand side −LT (ϕ0) = −ϕ(., T ) involved in (11), we need to compute ϕ the
solution to (1) with ψ = 0. Thus, using the complete orthonormal family (ei)i�0, we find

ϕ(x, y, t) =
∑

〈ϕ0, ei〉e−μi tei(x, y), in Q = Ω × (0, T ). (16)

i�0
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Hence, according to (15), (16) and using v̂0 = ∑
i�0 v̂ i

0ei , the linear system Av̂0 = −LT (ϕ0) gives

v̂ i
0 = −e−μi T

Aii
〈ϕ0, ei〉 = − 4L3μie−μi T

(D11π(2i + 1))2(1 − e−2μi T )
〈ϕ0, ei〉, for all i � 0. (17)

Furthermore, the solution to the adjoint problem (2) with v̂(., T ) = v̂0 is defined by

v̂(x, y, t) =
∑
i�0

v̂ i
0e−μi(T −t)ei(x, y) in Q = Ω × (0, T ). (18)

Therefore, since the unit normal vector is ν = (−1,0)� on ΓD , we obtain ψ(y, t) = D11∂x v̂(0, y, t) which in view of (17)
and (18) leads to define the sought HUM boundary control on

∑
D = ΓD × (0, T ) as follows:

ψ(y, t) = − 2L2

D11π

∑
i�0

ciμie−μi(2T −t)

(2i + 1)(1 − e−2μi T )
〈ϕ0, ei〉 cos

(
i
π



y

)
. (19)

In [8], some numerical experiments concerning the case of a rectangular domain with a diffusion tensor given by a
2 × 2 diagonal matrix are presented. Those experiments show that in this particular case, the boundary null-controllability
problem is well solved using the HUM boundary control derived in (19). Moreover, this numerical study is to appear involved
in recent results regarding an inverse source problem that consists of the identification of pollution sources in surface water,
see [3,4].

Besides, studying the extension of this technic in order to derive explicitly the HUM boundary control for different
geometries of the domain Ω and a more general diffusion tensor is a work in progress.
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