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r é s u m é

Nous prouvons dans cette Note l’existence d’une famille infinie d’ondes solitaires régulières
pour le système couplé de Schrödinger–Korteweg–de Vries, qui décroissent exponentiel-
lement a l’infini.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

Let us consider the coupled Schrödinger–KdV system:⎧⎨
⎩

i ft + D2 f = β f g − | f |2 f ,

gt + D3 g + g Dg = β

2
D

(| f |2), (1)

where f = f (x, t) is a complex-valued function, g = g(x, t) is real-valued, D = ∂
∂x represents the spatial derivative and β < 0

is a real constant.
The coupled Schrödinger–KdV system appears in the context of interaction phenomena between long waves and short

waves such as the resonant interaction between long and short capillary – gravity water waves. The global well-posedness
of the Cauchy problem for the I.V.P. associated to (1) was solved recently by A. Corcho and F. Linares [5] in the energy space
H1(R) × H1(R).

Here, we are concerned in finding bound-state solutions to (1) of the form(
f (x, t), g(x, t)

) = (
eiωteikxφ(x − ct),ψ(x − ct)

)
(2)
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where φ,ψ � 0. By choosing c = 2k and putting c∗ := k2 + ω, we obtain the system⎧⎨
⎩

−φ′′ + c∗φ = φ3 − βφψ,

−ψ ′′ + cψ = 1

2
ψ2 − β

2
φ2.

(3)

In [2], an existence theorem is derived for a general system similar to (3), although the method employed cannot be
exploited here due to the absence of a cubic term in the second equation. Also, in [1] and [3], the existence of bound states
(and ground states) for the coupled systems{

i ft + D2 f = f g,

gt + γ H Dg = βD
(| f |2), and

{
i( ft + c1 D f ) + δ1 D2 f = α f g,

gt + c2 Dg + D3 g + γ g Dg = βD
(| f |2) (4)

is studied (here, H denotes de Hilbert transform). Note however that the different approaches used rely heavily on the fact
that the nonlinear terms are quadratic and do not seem suitable to handle the term −|u|2u in the right-hand side of (1).

In what follows, for s ∈ R, we denote by Hs ≡ Hs(R) the usual Sobolev space with the norm ‖‖Hs and the L p norm will
be denoted by ‖‖p .

We end this introduction by stating our main result:

Theorem 1.1. For β < − 1
2 there exists a family

( fn, gn) = (
eiωnteiknxφn(x − cnt),ψn(x − cnt)

)
(5)

of non-trivial solutions to (1) with limn→∞ cn = +∞.
Here, φn, ψn are smooth positive functions which decay exponentially at infinity.

2. The minimization problem

For μ � 0, we set

I(μ) = inf
{

E(u, v): (u, v) ∈ Xμ

}
, (6)

where Xμ = {(u, v) ∈ H1 × H1: ‖u‖2
2 + ‖v‖2

2 = μ} (u, v real-valued) and

E(u, v) =
∫

(Du)2 +
∫

(D v)2 − 1

2

∫
u4 − 1

3

∫
v3 + β

∫
u2 v. (7)

We will apply the concentration–compactness method [6,7] to prove the existence of a minimizer for I(μ).

Proposition 2.1. For all μ > 0, I(μ) > −∞.

Proof. Let (u, v) ∈ Xμ: ‖u‖2
2 � μ and ‖v‖2

2 � μ. By the Gagliardo–Nirenberg inequalities:

‖v‖3
3 � C1‖D v‖

1
2
2 ‖v‖

5
2
2 � C1μ

5
4 ‖D v‖

1
2
2 and ‖u‖4

4 � C2‖Du‖2‖u‖3
2 � C2μ

3
2 ‖Du‖2,

where C j denote positive constants. Also,
∫ |v|u2 � 1

2 ‖v‖2
2 + 1

2 ‖u‖4
4 � μ

2 + C2
μ

3
2

2 ‖Du‖2. Finally, we obtain

E(u, v) � ‖Du‖2
2 + ‖D v‖2

2 − 1

2

∫
u4 − 1

3

∫
|v|3 − |β|

∫
u2|v|

� ‖Du‖2
2 + ‖D v‖2

2 − C2(1 + |β|)μ
3
2

2
‖Du‖2 − C1

3
μ

5
4 ‖D v‖

1
2
2 − |β|μ

2
, (8)

from where we deduce the existence of an inferior bound for E(u, v) depending exclusively on μ. �
Proposition 2.2. For all μ � 0, I(μ) � 0. Also, there exists μ∗ > 0 such that for all μ > μ∗ , I(μ) � −Aμ2 , where A is a positive
constant independent of μ.

Proof. Let μ � 0 and u ∈ H1 such that ‖u‖2
2 = μ. Then (u,0) ∈ Xμ and E(u,0) �

∫
(Du)2. Noticing that inf{∫ (Du)2:

‖u‖2
2 = μ} = 0, we get Iμ � 0.

We now consider u ∈ H1(R) such that ‖u‖2 = 1. Putting uμ(x) = μ
1
2 u(x), (uμ,0) ∈ Xμ . Furthermore,
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I(μ) � E(uμ,0) = μ

∫
(Du)2 − 1

2
μ2

∫
u4 = μ

(∫
(Du)2 − 1

4
μ

∫
u4

)
− μ2

4

∫
u4.

By choosing A = 1
4

∫
u4 and μ∗ such that

∫
(Du)2 − 1

4 μ∗ ∫
u4 � 0 we get the result. �

Remark 2.3. It is well known that for f ∈ H1(R) real valued, ‖D| f |‖L2 � ‖D f ‖L2 .
For a pair (u, v) ∈ X , E(|u|, |v|) � E(u, v). Hence, there exists a minimizing sequence (u j, v j) for problem (6) with

u j, v j � 0.

Lemma 2.4. Let μ > μ∗ . For all θ > 1, I(θμ) < θ I(μ).

Proof. Consider a positive minimizing sequence (u j, v j) ∈ Xμ for problem (6). We have

E
(√

θu j,
√

θ v j
) = θ E(u j, v j) − 1

2

(
θ2 − θ

) ∫
u4

j + (
θ

3
2 − θ

)(
β

∫
u2

j v j − 1

3

∫
v3

j

)

� θ E(u j, v j) + max
{
θ − θ2, θ − θ

3
2
}(1

2

∫
u4

j + |β|
∫

u2
j v j + 1

3

∫
v3

j

)
.

Since (u j, v j) is a minimizing sequence, 1
2

∫
u4

j + |β| ∫ u2
j v j + 1

3

∫
v3

j � δ for some δ > 0. Otherwise there would exist a
subsequence – still denoted (u j, v j) – such that lim E((u j, v j)) � 0, which is absurd since I(μ) < 0. Hence

E
(√

θu j,
√

θ v j
)
� θ E(u j, v j) − δ

(
θ2 − θ

)
for all θ > 1.

Since ‖√θu j‖2
2 + ‖√θ v j‖2

2 = θ‖u j‖2
2 + θ‖v j‖2

2 = θμ, we obtain I(θμ) < θ I(μ). �
From this lemma it is straightforward to prove that I is a non-increasing function of μ and therefore there exists μ1 � 0

such that I(μ) < 0 ⇔ μ > μ1. Arguing as in [8, Lemma 2.3], these facts are sufficient to prove the following key result:

Corollary 2.5 (Sub-additivity). Let μ > μ1 and 0 < Ω < μ. Then I(μ) < I(Ω) + I(μ − Ω).

Next, we prove the existence of minimizers:

Proposition 2.6. Let Mμ = {(u, v) ∈ Xμ: Iμ = E(u, v)}. For μ > μ1 , Mμ �= ∅.

Sketch of the proof. Let us consider a positive minimizing sequence (u j, v j) ∈ Xμ for problem (6). We will apply the
concentration–compactness lemma to the sequence ρ j = u2

j + v2
j . Using the notations in [6], we introduce the concentration

function of ρ j :

Q j(t) = sup
y∈R

y+t∫
y−t

ρ j, and we set Ω = lim
t→∞ Q (t).

We now have three alternatives: vanishing (Ω = 0), dichotomy (0 < Ω < μ) and compactness (Ω = μ). The latter implies
the relative compactness of the sequence (u j, v j) up to translations.

First, we rule out vanishing. Indeed, if Ω = 0, lim j→∞ supy∈R

∫ y+t
y−t u2

j = lim j→∞ supy∈R

∫ y+t
y−t v2

j = 0.

Since (u j) and (v j) are bounded in H1(R) (as seen in the proof of Proposition 2.1), a classical lemma (see [7, Lemma I.1])
yields ‖u j‖p → 0 and ‖v j‖p → 0 for all p > 2.

It results that

I(μ) = lim
j→∞ E(u j, v j) = lim

j→∞

∫
(Du j)

2 +
∫

D v j
2 − 1

2

∫
u4

j − 1

3

∫
v3

j + β

∫
u2

j v j � 0,

which is absurd by Proposition 2.2.
Corollary 2.5 easily rules out dichotomy. Indeed, in the present situation it is standard to construct for all ε > 0 two

sequences (u(i)
j , v(i)

j ), i = 1,2, such that∣∣∥∥u(1)
j

∥∥2
2 + ∥∥v(1)

j

∥∥2
2 − Ω

∣∣ < ε,
∣∣∥∥u(2)

j

∥∥2
2 + ∥∥v(2)

j

∥∥2
2 − (μ − Ω)

∣∣ < ε

and

E(u j, v j) � E
(
u(1)

j , v(1)
j

) + E
(
u(2)

j , v(2)
j

) − C(ε), lim
ε→0

C(ε) = 0.

This leads to Iμ � IΩ + Iμ−Ω, which is in contradiction with Corollary 2.5.
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Hence, we have compactness: extracting once again a subsequence, there exists {y j} such that(
ũ j = u j(. − y j), ṽ j = v j(. − y j)

) → (φ,ψ) in L2(R).

Furthermore, the sequence (ũ j, ṽ j) converges to (φ,ψ) in H1(R) weak. Hence, (ũ j, ṽ j) → (φ,ψ) in L p for all p � 2 :
‖ũ j‖4 → ‖φ‖4, ‖ṽ j‖3 → ‖ψ‖3,

∫
ũ2

j ṽ j → ∫
φ2ψ and Iμ � E(φ,ψ) � lim E(ũ j, ṽ j) = Iμ . Finally, (φ,ψ) ∈ Mμ �= ∅.

Note that we have obtained lim
∫

Dũ2
j + D ṽ2

j = ∫
Dφ2 + Dψ2, hence the convergence takes place in H1 strong. Also, it

is clear that ψ �= 0. We now show that φ �= 0: taking ψ such that (0,ψ) ∈ Xμ , for all θ ∈ [0,1], (θ
1
2 ψ, (1 − θ)

1
2 ψ) ∈ Xμ .

A straightforward computation leads to E(θ
1
2 ψ, (1 − θ)

1
2 ψ) � E(0,ψ) + fβ(θ)‖ψ‖3

3, where fβ(θ) = 1
3 (1 − (1 − θ)

3
2 ) +

βθ(1 − θ)
1
2 . We get the desired result after observing that f ′

β(0) < 0 for β < − 1
2 , since, for small θ , E(θ

1
2 ψ, (1 − θ)

1
2 ψ) <

E(0,ψ). �
3. End of the proof of Theorem 1.1

Let (φ,ψ) ∈ Mμ . There exists a Lagrange multiplier λ = λ(μ,φ,ψ) ∈ R such that⎧⎨
⎩

−φ′′ − λφ = φ3 − βφψ,

−ψ ′′ − λψ = 1

2
ψ2 − β

2
φ2.

(9)

Lemma 3.1. There exists a constant A > 0 such that for all μ > μ∗ , λ(μ,φ,ψ) � −Aμ.

Proof. Multiplying Eqs. (9) by φ and ψ respectively and integrating leads to∫
Dφ2 +

∫
Dψ2 − λμ =

∫
φ4 − 3β

2

∫
φ2ψ + 1

2

∫
ψ3.

Since Iμ = E(φ,ψ) = ∫
φ′2 + ∫

ψ ′2 − 1
2

∫
φ4 − 1

3

∫
ψ3 + β

∫
φ2ψ, we get

λμ = Iμ − 1

2

∫
φ4 + β

2

∫
φ2ψ − 1

6

∫
ψ3 � Iμ � −Aμ2, by Proposition 2.2.

The proof of the main theorem is complete by choosing a sequence μn → ∞ and setting cn = −λn , kn = − 1
2 λn and ωn =

−λn − k2
n . Note that the functions φ, ψ are positive since they are the limit in H1 of a positive minimizing sequence.

Also, a classical bootstrap argument proves the regularity of φ and ψ . Finally, since c∗
n = k2

n + ωn = −λn > 0, the argument
used in the proof of Theorem 8.1.1 in [4] (see also [1, Theorem 2.1]) easily proves the existence of ε1, ε2 > 0 such that
eε1|x|φ(x), eε2|x|ψ(x) ∈ L∞ , which results in the exponential decreasing of φ and ψ at infinity. �
Remark 3.2. In the particular case where 0 > β > − 1

6 and c = 4c∗ − 1
12 β(1 + 6β), it is possible to exhibit explicit solutions:

noticing that D2 sech = sech − 2 sech3 and D2 sech2 = 4 sech2 −6 sech4, it is easy to verify that the system (3) possesses the
exact solution

φ(x) =
√

2c∗(1 + 6β)

cosh(
√

c∗x)
, ψ(x) = 12c∗

cosh2(
√

c∗x)
.
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