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We answer negatively to a question of Zorboska (2003) [13], which is concerned to the
boundary behavior of Berezin symbols of Bergman space operators. We also introduce the
notions of (e)-summability of sequences and series of complex numbers, and study some
of their properties. As a corollary, we obtain the classical Abel theorems of summability
theory.
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r é s u m é

On donne une réponse négative à une question posée par Zobroska (2003) dans [13] ; cette
question porte sur le comportement à la frontière des symboles de Berezin d’opérateurs
spaciaux de Bergman. On introduit aussi les notions de (e)-sommabilité de suites et de
séries de nombres complexes et on étudie certaines de leurs propriétés. Comme corollaire,
on retrouve les théorèmes classiques de Abel sur la théorie de la sommabilité.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Berezin [2,3] introduces the notion of covariant and contravariant symbols of an operator. Berger and Coburn [4,5] are
the first to actually use the contravariant symbol of a Toeplitz operator, the so-called Berezin symbol.

In this article by applying summability theory we solve a problem posed by Zorboska in [13], which is concerned to
the boundary behavior of Berezin symbols of Bergman space operators. Namely, we give a concrete negative answer to a
question of Zorboska, while in [10] we have proposed a general procedure for constructing such examples.

Recall that the Bergman space L2
a = L2

a(D) is the Hilbert space of all analytic functions f on the unit disc D =
{z ∈ C: |z| < 1} for which

‖ f ‖L2
a
=

(∫
D

∣∣ f (z)
∣∣2

dA(z)

)1/2

< ∞,

where dA = dx dy
π is the normalized area measure on D. If f (z) = ∑∞

n=0 anzn and g(z) = ∑∞
n=0 bnzn are two functions in L2

a ,
then the inner product of f and g is given by
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〈 f , g〉 =
∫
D

f (z)g(z)dA(z) =
∞∑

n=0

anbn

n + 1
.

The Berezin symbol of a bounded linear operator T on the Bergman space L2
a is the function

T̃ (λ) :=
〈

T
kλ

‖kλ‖ ,
kλ

‖kλ‖
〉

(λ ∈ D),

where kλ(z) = 1
(1−λz)2 is the reproducing kernel of L2

a .

It is known that on the most familiar functional Hilbert spaces, including the spaces L2
a and H2 = H2(D) (Hardy space),

the Berezin symbol uniquely determines the operator (i.e., T̃1(λ) = T̃2(λ) for all λ implies T1 = T2), see for instance
Fricain [7]. Thus, the Berezin symbol is very effective in many cases in the sense that it contains a lot of information
about the operator that induces it. Successful applications of the Berezin symbol are so far mainly in the study of Hankel
and Toeplitz operators [12]. This method is motivated by its connections with quantum physics (see, for instance, [2,3]).
More informations about Berezin symbols can be found, for instance in [9,11,12].

It is known more about the boundary values of the Berezin symbol of a compact operator T . Since { kλ‖kλ‖ } converges

weakly and uniformly to zero as |z| converges to 1, T̃ (λ) converges to zero uniformly as |z| approaches 1, whenever the
operator T is compact on L2

a . One of the deeper results on Berezin symbols obtained in [1] and [6] (see also [9, Theo-
rem 2.11]) states that a function ϕ is a bounded harmonic function on D if and only if ϕ(λ) = T̃ϕ(λ) for every λ ∈ D; here
Tϕ is the Toeplitz operator on L2

a . Note that bounded harmonic functions have radial boundary values almost everywhere
on the unit circle T = ∂D. It is also true that if ϕ is a continuous function on the closed unit disc D, then T̃ϕ is in C(D)

and T̃ϕ = ϕ on T (see Zhu [12, Proposition 6.1.6]). In this connection, in [13], Zorboska formulated the following natural
and fundamental question: does the Berezin symbol of a bounded operator on L2

a(D) have radial limits almost everywhere
on the unit circle T?

This article, in particular, answers this question negatively. Namely, we give a concrete example to a bounded diagonal
operator on the Bergman space L2

a such that its Berezin symbol has no radial limits even anywhere on the unit circle T (see
Theorem 2.1 below). The diagonal operators technique is also used in the study of (e)-summability, which is introduced in
Section 2 (see Theorem 3.2).

Before giving our results, we note that the Berezin symbol of an operator T on the Bergman space L2
a has an explicit

formula given by

T̃ (λ) = (
1 − |λ|2)2

∞∑
m=0

∞∑
n=0

√
(n + 1)(m + 1)

〈
T zn, zm〉

λnλm, (1)

for every λ ∈ D.

2. A counterexample to Zorboska’s question

The following result gives negative answer to Zorboska’s question:

Theorem 2.1. Let an = n−ic , where c ∈ R\{0}, and let bn := 1
n+1

∑n
j=0 a j , n � 0 (we put a0 := 0). Let D{bn} be the diagonal operator

with diagonal elements bn with respect to the standard orthonormal basis en(z) = √
n + 1zn, n � 0, of the Bergman space L2

a . Then
the Berezin symbol D̃{bn} of the operator D{bn} has no radial limits anywhere on the unit circle T.

Proof. Let sn := ∑n
k=1 k−1−ic . Since the series

∑
n−1−ic is not convergent and n−1−ic = O (1/n), it follows from the Taube-

rian theorem that
∑

n−1−ic is not Abel-convergent. On the other hand, in [8, p. 163] Hardy shows that sn + an
ic tends to a

finite limit as n tends to infinite. Therefore it follows that the sequence {an} cannot be Abel-convergent, for if it were we
would get that {sn} is Abel-convergent, which is absurd. Obviously, {bn} is a bounded sequence, and therefore the diagonal
operator D{bn} is bounded on L2

a . Now by setting T = D{bn} in the formula (1), we have

D̃{bn}(λ) = (
1 − |λ|2)2

∞∑
m=0

(m + 1)bm|λ|2m,

for every λ ∈ D. Simple calculus shows that

D̃{bn}(λ) = (
1 − |λ|2) ∞∑

m=0

[
(m + 1)bm − mbm−1

]|λ|2m,

that is
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D̃{bn}(λ) = (
1 − |λ|2) ∞∑

m=0

am|λ|2m, (2)

for all λ ∈ D (which shows that D̃{bn} is a radial function, that is D̃{bn}(λ) = D̃{bn}(|λ|)). Since t := |λ|2 < 1 and {am} is not
Abel-convergent sequence, it follows easily from (2) that the Berezin symbol D̃{bn} of the diagonal operator D{bn} has no
radial limits anywhere on T, which completes the proof of theorem. �
3. (e)-summability method

In this section we introduce a new summability method for sequences and series of complex numbers, which we call
(e)-summability. We give in terms of Berezin symbols of an associate diagonal operator a criteria for this summability
method, and prove regularity of this (e)-summability method (Theorem 3.2). Recall that a method is said to be regular if it
sums every convergent sequence to its ordinary limit. It is well known for example that Cezaro, Abel and Borel methods are
regular (see [8]).

Definition 3.1. Let H = H(Ω) be a functional Hilbert space on some set Ω with reproducing kernel kλ(z) :=∑
n�0 en(λ)en(z), where e := {en(z)}n�0 is an orthonormal basis of H. Let {an} be any sequence of complex numbers.

(1) We say that the sequence {an}n�0 is (e)-convergent to a if
∑∞

n=0 an|en(λ)|2 converges for all λ ∈ Ω and

lim
λ→ζ

1∑∞
n=0 |en(λ)|2

∞∑
n=0

an
∣∣en(λ)

∣∣2 = a,

for every ζ ∈ ∂Ω .
(2) We say that the series

∑∞
n=0 an is (e)-summable to a if

∑∞
n=0 an|en(λ)|2 converges for all λ ∈ Ω and

limλ→ζ

∑∞
n=0 an|en(λ)|2 = a for every ζ ∈ ∂Ω .

It is easy to see that for H = H2(D) (Hardy space) and H = L2
a(C) (Fock space) our definitions of (e)-summability

coincide with Abel and Borel summability, respectively.
For any bounded sequence {an}n�0 of complex numbers, let D{an} denote the diagonal operator on H defined by

D{an}en(z) = anen(z), n = 0,1,2, . . ., with respect to the orthonormal basis e = {en(z)}n�0 of H.
Following [11], we say that a functional Hilbert space H of complex-valued functions on some set Ω is standard if the

underlying set Ω is a subset of a topological space and the boundary ∂Ω is non-empty and has the property that { kλ‖kλ‖ }
converges weakly to 0 whenever λ tends to a point on the boundary.

The main result of this section is the following:

Theorem 3.2.

(i) If {an}n�0 is a bounded sequence of complex numbers, then the sequence {an}n�0 (e)-converges to a if and only if
limλ→ζ D̃{an}(λ) = a, for every ζ ∈ ∂Ω .

(ii) If {an}n�0 is a bounded sequence of complex numbers, then the series
∑∞

n=0 an is (e)-summable to a if and only if

lim
λ→ζ

( ∞∑
n=0

∣∣en(λ)
∣∣2

)
D̃{an}(λ) = a,

for every ζ ∈ ∂Ω .
(iii) If H is a standard functional Hilbert space, then (e)-summability method for sequences is regular.

Proof. Since {an}n�0 is a bounded sequence, D{an} is a bounded operator on H. If k̂λ is the normalized reproducing kernel
of H, then we have

D̃{an}(λ) = 〈D{an }̂kλ, k̂λ〉 = 1

‖kλ‖2

〈
D{an}

∞∑
n=0

en(λ)en(z),kλ

〉

= 1∑∞
n=0 |en(λ)|2

〈 ∞∑
n=0

en(λ)anen(z),kλ

〉
= 1∑∞

n=0 |en(λ)|2
∞∑

n=0

an
∣∣en(λ)

∣∣2
,

for all λ ∈ Ω . Thus
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D̃{an}(λ) = 1∑∞
n=0 |en(λ)|2

∞∑
n=0

an
∣∣en(λ)

∣∣2
, λ ∈ Ω. (3)

Since supλ∈Ω |D̃{an}(λ)| � ‖D̃{an}‖ = supn�0 |an| < ∞, formula (3) immediately implies the assertions (i) and (ii) of the the-
orem.

Now we prove the assertion (iii). Let {an}∞n=0 converge to a. Then D{an−a} is a compact operator, and therefore D̃{an−a}
vanishes on the boundary ∂Ω (because H is a standard functional Hilbert space), that is D̃{an−a}(λ) → 0 as λ → ζ ∈ ∂Ω . By
considering this and formula (3), we have

lim
λ→ζ

D̃{an}(λ) = lim
λ→ζ

1∑∞
n=0 |en(λ)|2

∞∑
n=0

an
∣∣en(λ)

∣∣2 = lim
λ→ζ

1∑∞
n=0 |en(λ)|2

∞∑
n=0

(an − a + a)
∣∣en(λ)

∣∣2

= lim
λ→ζ

1∑∞
n=0 |en(λ)|2

∞∑
n=0

(an − a)
∣∣en(λ)

∣∣2 + a = lim
λ→ζ

D̃{an−a} + a,

which shows that (e)-limn an = a, as desired. The theorem is proved. �
The following corollaries can be obtained from Theorem 3.2 by setting H = H2:

Corollary 3.3. Let {an}n�0 be a bounded sequence of complex numbers, and let D{an} be the diagonal operator on H2 with diagonal
elements an, n � 0, with respect to the orthonormal basis {zn}n�0 of H2 . Then:

(i) the sequence {an}n�0 is Abel convergent to a if and only if limt→1− D̃{an}(t) = a;

(ii) the series
∑∞

n=0 an is Abel summable to a if and only if limt→1− D̃{an}(t)
1−t = a.

Corollary 3.4. (See Abel theorem [8].) If {an}n�0 converges to a, then {an}n�0 is Abel convergent to a.

Corollary 3.5. (See Abel theorem [8].) If the series
∑∞

n=0 an converges to a, then
∑∞

n=0 an is Abel summable to a.

The next result gives in terms of Berezin symbols a formula for the sum of some convergent series of complex numbers.
Its proof (which is omitted) uses Corollary 3.3 and L’Hôspital rule.

Corollary 3.6.

(i) Let {an}n�0 be any sequence of complex numbers. If the series
∑∞

n=0 an converges to a, then a = limt→1− D̃{an}(t)
1−t , where D{an} is

the diagonal operator on H2 , with diagonal elements an, n � 0, with respect to the orthonormal basis {zn}n�0 .
(ii) Let {an}n�0 be a sequence of complex numbers such that {nan}n�0 is Abel convergent to 0. If the series

∑∞
n=0 an converges to a,

then a = − limt→1− D̃ ′{an}(t).
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