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This Note presents a new method of direct forcing to deal with obstacles in incompressible
flows. It mixes projection schemes and velocity L2 penalty schemes. The penalized direct
forcing term is distributed in the velocity prediction and the correction equations. It leads
to a natural treatment in the correction equation of the boundary conditions in pressure
around obstacles. A numerical experiment provided an illustration of the method.
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r é s u m é

Cette Note présente une nouvelle méthode de forçage directe pour prendre en compte
des obstacles dans un écoulement incompressible. Elle mélange méthodes de projection et
de pénalisation L2 des vitesses. La ventilation du terme de forçage direct pénalisé dans les
équations de prédiction et de correction conduit à un traitement naturel des conditions aux
limites pour la correction de pression aux bords des obstacles. Une expérience numérique
est présentée à titre d’illustration.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The well-known incompressible Navier–Stokes equations allow the description of the behavior of incompressible flows
(div u = 0 with u the fluid velocity). Mass and momentum balance equations in the fluid domain Ω f read as (with Dirichlet
boundary conditions – BC –, u = uD on ∂Ω f ):{

∂tu + u ⊗ ∇u + ρ−1∇p − div(ν∇u) = f in Ω f ,

div u = 0 in Ω f
(1)

with p the pressure, ρ the (constant) density, ν the cinematic viscosity and f the volume force.
The projection method (or fractional step method) for an incompressible fluid was introduced by Chorin and Temam

in 1968 [2,10]. The incremental projection scheme of Shen [9] reads as follow.1 First, a non-divergence free velocity ũ is
predicted using the previous time step pressure. For example, a linearized implicit Euler time discretization,2 with un,∗
given by an Adam–Bashforth scheme, leads to:

E-mail addresses: michel.belliard@cea.fr (M. Belliard), clarisse.fournier@cea.fr (C. Fournier).
1 Projection schemes for dilatable or barotropic fluid can be found in [4,6].
2 Using the Crank–Nicholson time scheme should be worth trying, but it is not the goal of this Note.
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ũ − un

�t
+ un,∗ ⊗ ∇ũ + ρ−1∇pn − div(ν∇ũ) = fn+1 in Ω f and ũ = uD on ∂Ω f . (2)

Second, with the hypothesis div(ν∇ũ) ∼ div(ν∇un+1) and un,∗ ⊗ ∇ũ ∼ un,∗ ⊗ ∇un+1, a correction stage is performed to
recover the divergence free velocity un+1:{

un+1−ũ
�t = −ρ−1∇φn+1 in Ω f and un+1 = uD on ∂Ω f

div un+1 = 0 in Ω f

(3)

with φn+1 = pn+1 − pn the pressure correction. Considering the divergence free condition, we are able to compute φn+1 and
so on the divergence free velocity un+1 and the new pressure pn+1 by:

div∇φn+1 = ρ

�t
div ũ in Ω f and ∇φn+1 · n = 0 on ∂Ω f . (4)

2. Direct forcing

In the context of the Fictitious Domain methods, the Immersed Boundary method was introduced by Peskin at the
beginning of 1970 [8]. Considering obstacles in a flow, the fluid domain Ω f is extended to Ω including the obstacle domain
Ωs: Ω = Ω f ∪ Ωs . A body force is added to the momentum equation to take into account the obstacle. In 1997 Mohd-Yusof
introduced the Direct Forcing method [7]:

un+1 − un

�t
= Tn,n+1 + Fn,n+1 in Ω (5)

with Tn,n+1 = fn+1 − un,∗ ⊗ ∇un+1 − ρ−1∇pn+1 + div(ν ∇un+1). The forcing term is defined as:

Fn,n+1 = χs

[
(vn+1

s − un)

�t
− Tn,n+1

]
(6)

with vs the imposed fluid velocity around/inside the obstacle and χs : R3 → R the discrete characteristic function or the
volume ratio function of the obstacle, see [3].

Remark 1. The imposed velocity vs needs to be interpolated from the fluid velocity field ũ and the boundary condition to
improve the accuracy (vs = ε̄ũ, see Fadlun et al. [3]).

Remark 2. The direct forcing should be taken into account into the projection (4) through the interpolation matrix ε̄
(div ε̄∇φ = ρ

�t div ũ) to get a free divergence velocity respecting the boundary conditions (consistent scheme, see Ikeno
et al. [5]).

3. Penalized direct forcing

In this new method, the following forcing term is added to the right-hand side of Navier–Stokes equations:

Fn+1 = χs

η�t

(
vn+1

s − un+1) with 0 < η � 1. (7)

It can be viewed as an implicit forcing term c χs
�t (vs − u) as well as a velocity L2 penalty term c χs

η (vs − u) [1]. As for

the Direct Forcing, interpolations can be used to determine the imposed velocity vs . In the following, un+1 is the solution
of penalized Navier–Stokes. Lets define un+1

η := limη→0 un+1. Then, we have un+1
η ∼ vn+1

s . Following Angot et al. [1], un+1
η

converges toward the N.-S. body fitted solution in L2(Ωs) norm with order � 3/4 in η. The new feature of our algorithm
is that the forcing term (7) is distributed in the prediction and the correction stages of the projection leading to a natural
consistent scheme:⎧⎨

⎩
ũ−un

�t + un,∗ ⊗ ∇ũ + ρ−1∇pn − divν∇ũ = fn+1 + χs
η�t

(
vn+1

s − ũ
)

in Ω,

un+1−ũ
�t = −ρ−1∇φn+1 + χs

η�t

(
ũ − un+1

)
in Ω.

(8)

The first equation of (8) leads to the penalized predicted velocity: ũη := limη→0 ũ ∼ vn+1
s in Ωs . Hence the Dirichlet bound-

ary conditions of (2) are locally enforced on ∂Ω f ∩ ∂Ωs . The second equation of (8) suggests:

un+1 − ũ = −ρ̌−1∇φn+1 in Ω with suitable BC on ∂Ω. (9)

�t



M. Belliard, C. Fournier / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1133–1136 1135
Fig. 1. Poiseuille flow: direct forcing and penalized direct forcing. Left: velocity and pressure fields (linearly interpolated Penalized Direct Forcing). Right:
velocity profiles (no interpolation or linear interpolation, no consistent or consistent scheme).

This equation is similar to the first one of (3) with ρ̌ := ρ(1 + χs
η ) justifying the introduction of the term �t in (7). For

χs = 0, we have ρ̌ = ρ and limη→0 ρ̌(η) ≈ O(η−1) for χs > 0. Using div un+1 = 0 in Ω f and div un+1 = div vn+1
s in Ωs ,

instead of the second equation of (3), we get a slightly modification of the first equation of (4):

div
η

η + χs
∇φn+1 = ρ

�t

(
div ũ − χs div vn+1

s

)
in Ω with suitable BC on ∂Ω. (10)

Lets remark that, in case of solid rotations and/or translations, div vs = 0 in Ωs . For χs = 1, we have an effective diffusion
coefficient η

1+η ≈ O(η) � 1. Then, the homogeneous Neumann boundary conditions of (4) are locally enforced on ∂Ω f ∩∂Ωs

in a natural way. Finally, the correction (9) allows the computation of un+1. We have un+1
η ∼ ũη ∼ vn+1

s in Ωs .

Remark 3. In Ωs , all the diffusion coefficients may vanish leading to numerical problems solving (10). Then, adding a
pressure L2 penalty term can be a cure, leading to a different formulation of the pressure correction equation (where φ0 is
a prescribed pressure correction):

div O(η)∇φn+1 + 1

η

(
φn+1 − φ0

) = ρ

�t

(
div ũ − div vn+1

s

)
in Ωs. (11)

4. Numerical experiments

Fig. 1, left, shows a 2D Poiseuille flow in a square channel rotated of 45◦ with regard to the Cartesian mesh. Immersed
boundaries define the solid walls (black lines). Imposed near-wall velocities are linearly interpolated from the nearest free
fluid velocities and the boundary conditions vn+1

s = ε̄un . Computations are done using the CEA CFD code Trio_U [11]. The
value of the penalty coefficient η is 10−12. Velocity profiles, obtained by the linearly interpolated Penalized Direct Forcing
method, compare very well to the theoretical ones, see Fig. 1, right. Without consistent schemes the theoretical velocities
are missed whatever the interpolation is. Moreover, the numerical order of the method remains about 2 in L2 norm when
using a second order discretization for the spatial operators.
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