Group Theory/Lie Algebras

Exterior powers of the reflection representation in the cohomology of Springer fibres

Les puissances extérieures de la représentation géométrique dans la cohomologie des fibres de Springer

Anthony Henderson ${ }^{1}$
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

ARTICLE INFO

Article history:

Received 3 February 2010
Accepted after revision 15 September 2010
Available online 25 September 2010
Presented by Gérard Laumon

Abstract

Let $H^{*}\left(\mathcal{B}_{e}\right)$ be the cohomology of the Springer fibre for the nilpotent element e in a simple Lie algebra \mathfrak{g}. Let $\Lambda^{i} V$ denote the i th exterior power of the reflection representation of W. We determine the degrees in which $\Lambda^{i} V$ occurs in the graded representation $H^{*}\left(\mathcal{B}_{e}\right)$, under the assumption that e is regular in a Levi subalgebra and satisfies a certain extra condition which holds automatically if \mathfrak{g} is of type A, B, or C. This partially verifies a conjecture of Lehrer and Shoji.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
R É S U M É
Soit $H^{*}\left(\mathcal{B}_{e}\right)$ la cohomologie de la fibre de Springer pour l'élément nilpotent e de l'algèbre de Lie simple \mathfrak{g}. Soit $\Lambda^{i} V$ la i-ème puissance extérieure de la représentation géométrique de W. Nous trouvons les degrés des contributions de $\Lambda^{i} V$ à la représentation graduée $H^{*}\left(\mathcal{B}_{e}\right)$, si e est régulier dans une sous-algèbre de Levi et satisfait à une autre condition qui est vraie si \mathfrak{g} est de type A, B, ou C. Ce résultat démontre partiellement une conjecture de Lehrer et Shoji.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \mathfrak{g} be a simple complex Lie algebra of rank ℓ. Let W denote the Weyl group of \mathfrak{g}, and let V be the reflection representation of W. It is well known that the exterior powers $\Lambda^{i} V$, for $i=0,1, \ldots, \ell$, are inequivalent irreducible representations of W, each of which is self-dual.

Let e be a nilpotent element of \mathfrak{g}. The Springer fibre \mathcal{B}_{e} is the variety of Borel subalgebras of \mathfrak{g} containing e. Let $H^{*}\left(\mathcal{B}_{e}\right)$ denote the graded cohomology ring of \mathcal{B}_{e} with complex coefficients; the cohomology lives solely in even degrees, so $H^{*}\left(\mathcal{B}_{e}\right)$ is commutative. We have the Springer representation of W on each $H^{2 j}\left(\mathcal{B}_{e}\right)$ (see [5], [2, Chapter 9]). Let s (depending on e) denote the multiplicity of the irreducible representation V in the total representation $H^{*}\left(\mathcal{B}_{e}\right)$. Let $m_{1}, m_{2}, \ldots, m_{s}$ be the multiset of nonnegative integers, listed in increasing order, which are the halved degrees of the occurrences of V in the graded representation $H^{*}\left(\mathcal{B}_{e}\right)$. That is, we have by definition $\sum_{j} \operatorname{dim}\left(H^{2 j}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W} q^{j}=q^{m_{1}}+q^{m_{2}}+\cdots+q^{m_{s}}$.

[^0]In the special case $e=0$, it is well known (see $[5, \S 5]$) that $H^{*}(\mathcal{B})$ is isomorphic to the coinvariant algebra $C^{*}(W)$ of W, that $s=\ell$, and that m_{1}, \ldots, m_{ℓ} are the exponents of W. More generally, if e is a regular nilpotent in a Levi subalgebra of semisimple rank r, then it was proved by Lehrer and Shoji in [3, Theorem 2.4] (see also [9]) that $s=\ell-r$ and that m_{1}, \ldots, m_{s} are the coexponents of the corresponding parabolic hyperplane arrangement, in the sense of Orlik and Solomon. See [8] for some other related interpretations of these coexponents. For \mathfrak{g} of classical type and general e, the numbers $m_{1}, m_{2}, \ldots, m_{s}$ were calculated by Spaltenstein in [9, Propositions 1.6-1.9].

Lehrer and Shoji conjectured that, at least in the parabolic case which they considered, the occurrences of each exterior power $\Lambda^{i} V$ in $H^{*}\left(\mathcal{B}_{e}\right)$ were also controlled in a natural way by $m_{1}, m_{2}, \ldots, m_{s}$.

Conjecture 1.1. (See [3, Conjecture 8.3].) Suppose that e is a regular nilpotent in a Levi subalgebra. Then for any $i=0,1, \ldots$, , we have $\sum_{j} \operatorname{dim}\left(H^{2 j}\left(\mathcal{B}_{e}\right) \otimes \Lambda^{i} V\right)^{W} q^{j}=e_{i}\left(q^{m_{1}}, q^{m_{2}}, \ldots, q^{m_{s}}\right)$ (the ith elementary symmetric polynomial in $q^{m_{1}}, q^{m_{2}}, \ldots, q^{m_{s}}$, which is defined to be zero if $i>s$).

The $e=0$ case of this conjecture had already been proved by Solomon in [6]; indeed, he proved the stronger statement that the algebra $\left(C^{*}(W) \otimes \Lambda^{*} V\right)^{W}$ is a free exterior algebra on $\left(C^{*}(W) \otimes V\right)^{W}$.

The main result of this Note is the following generalization of Solomon's result, which implies various cases of Conjecture 1.1:

Theorem 1.2. Suppose that e is regular in a Levi subalgebra of \mathfrak{g}, and define s and m_{1}, \ldots, m_{s} as above. Also suppose that there is a parabolic subgroup W_{K} of W such that the following two conditions hold:
(1) There exist invariant polynomials $f_{1}, f_{2}, \ldots, f_{s} \in\left(S^{*} V\right)^{W}$, homogeneous of degrees $m_{1}+1, m_{2}+1, \ldots, m_{s}+1$, whose restrictions to the reflection representation V_{K} of W_{K} form a set of fundamental invariants for W_{K}.
(2) The nilpotent orbit of e intersects the nilradical of the parabolic subalgebra \mathfrak{p}_{K} associated to W_{K}.
(See Section 2 for the definitions of V_{K} and \mathfrak{p}_{K}.) Then the algebra $\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes \Lambda^{*} V\right)^{W}$ is a free exterior algebra on $\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W}$. More precisely, the natural homomorphism $\psi: \Lambda^{*}\left(\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W}\right) \rightarrow\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes \Lambda^{*} V\right)^{W}$ is an isomorphism.

Here the domain and codomain of ψ are $(\mathbb{N} \times \mathbb{N})$-graded algebras over \mathbb{C}, where the (i, j)-components are $\Lambda^{i}\left(\left(H^{2 j}\left(\mathcal{B}_{e}\right) \otimes\right.\right.$ $V)^{W}$) and $\left(H^{2 j}\left(\mathcal{B}_{e}\right) \otimes \Lambda^{i} V\right)^{W}$ respectively, and in both cases the algebra multiplication is graded-commutative with respect to the \mathbb{N}-grading labelled by i; the homomorphism ψ is induced by the inclusion of the subspace $\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W}$ in $\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes \Lambda^{*} V\right)^{W}$. Since the graded degrees of this subspace are $\left(1, m_{1}\right),\left(1, m_{2}\right), \ldots,\left(1, m_{s}\right)$, the statement that ψ is an isomorphism implies Conjecture 1.1.

Simple calculations ${ }^{2}$ verify the following results:
Proposition 1.3. If \mathfrak{g} is of type A, then the assumptions of Theorem 1.2 hold for any e.
Proposition 1.4. If \mathfrak{g} is of type B or C, then the assumptions of Theorem 1.2 hold for any e which is regular in a Levi subalgebra.
Hence Conjecture 1.1 is proved in types A-C. By contrast, suppose that \mathfrak{g} is of type D_{4} and e has Jordan type $\left(3^{2} 1^{2}\right)$ in the natural representation on \mathbb{C}^{8}. Then e is regular in a Levi subalgebra of type A_{2}, but we have $m_{2}=2$ and there are no W-invariant polynomials of degree 3 , so condition (1) of Theorem 1.2 cannot be satisfied.

2. Proof of Theorem 1.2

Continue the notation of the introduction. Let $\mathfrak{h} \subset \mathfrak{b}$ be a Cartan subalgebra and Borel subalgebra of \mathfrak{g}, and let $\Pi \subset$ $\Phi^{+} \subset \Phi$ be the corresponding set of simple roots, positive roots, and roots. We identify W with the subgroup of $G L(\mathfrak{h})$ generated by the simple reflections s_{α} for $\alpha \in \Pi$; the reflection representation V of W is merely \mathfrak{h} itself.

Let $J \subseteq \Pi$ be a subset of size r, and set $s=\ell-r$. We have a Levi subalgebra \mathfrak{l}_{J} and parabolic subalgebra \mathfrak{p}_{J} containing \mathfrak{h} and \mathfrak{b} respectively, a parabolic subsystem Φ_{J} of Φ, and a parabolic subgroup W_{J} of W. Define $V^{J}=\bigcap_{\alpha \in J} \operatorname{ker}(\alpha)=V^{W_{J}}$. We write V_{J} for the unique W_{J}-invariant complement to V^{J} in V, which is the reflection representation of W_{J}. Note that $\operatorname{dim} V^{J}=s$ and $\operatorname{dim} V_{J}=r$. Let \mathcal{A}^{J} and \mathcal{A}_{J} be the hyperplane arrangements in V^{J} and V_{J} respectively induced by the root hyperplanes in V.

We assume for the remainder of the section that e is parabolic of type J, meaning that the orbit of e contains the regular nilpotent elements of \mathfrak{l}_{J}. As mentioned in the introduction, Lehrer and Shoji proved in this case that $\sum_{j} \operatorname{dim}\left(H^{2 j}\left(\mathcal{B}_{e}\right) \otimes\right.$ $V)^{W} q^{j}=q^{m_{1}}+q^{m_{2}}+\cdots+q^{m_{s}}$, where m_{1}, \ldots, m_{s} are the coexponents of the arrangement \mathcal{A}^{J}. (See [3, Theorem 2.4]; the missing case in type D is covered by the results of Spaltenstein [9].)

An important special feature of the parabolic case is Lusztig's Induction Theorem for Springer representations.

[^1]Theorem 2.1. (See [4].) The representation of W on $H^{*}\left(\mathcal{B}_{e}\right)$, neglecting the grading, is isomorphic to the induction $\operatorname{Ind}_{W_{J}}^{W}(\mathbb{C})$ of the trivial representation of W_{J}.

Corollary 2.2. We have $\operatorname{dim}\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes \Lambda^{*} V\right)^{W}=2^{s}$, so the domain and codomain of ψ have the same dimension.
Proof. By Frobenius Reciprocity, we know that $\operatorname{dim}\left(\operatorname{Ind}_{W_{J}}^{W}(\mathbb{C}) \otimes \Lambda^{*} V\right)^{W}=\operatorname{dim}\left(\Lambda^{*} V\right)^{W_{J}}$. From the fact that $\left(\Lambda^{*} V\right)^{s_{\alpha}}=$ $\Lambda^{*}(\operatorname{ker}(\alpha))$ for all $\alpha \in J$ one deduces $\left(\Lambda^{*} V\right)^{W_{J}}=\Lambda^{*}\left(V^{J}\right)$, and the corollary follows.

So to prove Theorem 1.2, it suffices to show that the homomorphism ψ is injective. Since the domain is an exterior algebra, this will follow if we can show that $\psi\left(\Lambda^{S}\left(\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W}\right)\right) \neq 0$.

Using the W-equivariant isomorphism of V with its dual, we will identify the symmetric algebra $S^{*} V$ with the ring of polynomial functions on V. It is well known that the invariant subring $\left(S^{*} V\right)^{W}$ is freely generated by ℓ homogeneous polynomials, called fundamental invariants for W. The coinvariant algebra $C^{*}(W)$ of W is the quotient $S^{*} V / I$, where I is the ideal generated by these fundamental invariants.

Now there is a canonical (degree-doubling) W-equivariant algebra homomorphism $S^{*} V \rightarrow H^{*}(\mathcal{B})$ which identifies $H^{*}(\mathcal{B})$ with $C^{*}(W)$ (see [5, §5]). Composing this with the natural homomorphism $H^{*}(\mathcal{B}) \rightarrow H^{*}\left(\mathcal{B}_{e}\right)$, which is W-equivariant by [9, Lemma 1.4] (this fact in characteristic p was [1, Theorem 1.1]), we obtain a W-equivariant homomorphism $\varphi: S^{*} V \rightarrow H^{*}\left(\mathcal{B}_{e}\right)$. Note that the image of φ is contained in the subspace $H^{*}\left(\mathcal{B}_{e}\right)^{A(e)}$ of invariants for the component group of the centralizer of e in the adjoint group of \mathfrak{g}; in particular, φ is not surjective in general. However, it may happen that the induced map $\left(S^{*} V \otimes V\right)^{W} \rightarrow\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W}$ is surjective even if φ is not. We will see that this occurs under the assumptions of Theorem 1.2, which means that a calculation with polynomials on V suffices to prove what we want.

Henceforth we let $K \subseteq \Pi$ be a subset satisfying conditions (1) and (2) of Theorem 1.2. Note that condition (1) entails $|K|=s$. Choose a basis $v_{1}, v_{2}, \ldots, v_{\ell}$ of V such that v_{1}, \ldots, v_{s} is a basis of V_{K}. Since the exterior derivative $S^{*} V \rightarrow$ $S^{*} V \otimes V: f \mapsto \sum \frac{\partial f}{\partial v_{j}} \otimes v_{j}$ is W-equivariant, we have the following s elements of $\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W}:$

$$
\sum_{j=1}^{n} \varphi\left(\frac{\partial f_{1}}{\partial v_{j}}\right) \otimes v_{j}, \sum_{j=1}^{n} \varphi\left(\frac{\partial f_{2}}{\partial v_{j}}\right) \otimes v_{j}, \ldots, \sum_{j=1}^{n} \varphi\left(\frac{\partial f_{s}}{\partial v_{j}}\right) \otimes v_{j}
$$

We can prove both that these form a basis of $\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W}$, and that $\psi\left(\Lambda^{s}\left(\left(H^{*}\left(\mathcal{B}_{e}\right) \otimes V\right)^{W}\right)\right) \neq 0$ as required, by proving the single fact that $\varphi(\Delta) \neq 0$, where Δ is the determinant of the $s \times s$ matrix $\left(\frac{\partial f_{a}}{\partial v_{b}}\right)$, with a and b ranging from 1 to s. Since v_{1}, \ldots, v_{s} span the reflection representation of W_{K}, we have $w \Delta=\varepsilon(w) \Delta$ for all $w \in W_{K}$. This forces Δ to be divisible by the polynomial $\pi_{K}=\prod_{\beta \in \Phi_{K}^{+}} \beta$. Condition (1) tells us that on restricting to V_{K}, Δ becomes the Jacobian matrix of the fundamental invariants of W_{K}, which is well known to be a nonzero scalar multiple of the restriction to V_{K} of π_{K} (see [10]). So Δ is a nonzero scalar multiple of π_{K}, and it suffices to prove that $\varphi\left(\pi_{K}\right) \neq 0$.

By condition (2), we may suppose that e lies in the nilradical of \mathfrak{p}_{K}. Then any Borel subalgebra contained in \mathfrak{p}_{K} must contain e, so we have an inclusion $\mathcal{B}^{K} \hookrightarrow \mathcal{B}_{e}$, where \mathcal{B}^{K} denotes the variety of Borel subalgebras contained in \mathfrak{p}_{K}, which can be identified with the flag variety of \mathfrak{l}_{K}. Hence it suffices to prove that π_{K} is not in the kernel of the composition $S^{*} V \rightarrow H^{*}(\mathcal{B}) \rightarrow H^{*}\left(\mathcal{B}^{K}\right)$. But this composition is the canonical homomorphism identifying $C^{*}\left(W_{K}\right)$ with $H^{*}\left(\mathcal{B}^{K}\right)$, which maps π_{K} to a generator of the top-degree cohomology of \mathcal{B}^{K} (compare [1, Proposition 1.4], which uses exactly this argument in the case when e lies in the Richardson orbit of \mathfrak{p}_{K}). This completes the proof of Theorem 1.2.

Acknowledgements

The main result of this Note, Theorem 1.2, dates from 1997, when I was a student at the University of Sydney, supervised by Gus Lehrer. As the reader will observe, it is indebted to Lehrer's ideas, and I thank him for his help and encouragement. I did not publish this result at the time, since it did not prove the motivating Conjecture 1.1 in general. Recently Eric Sommers [7] has completed the proof of Conjecture 1.1 by a different method, and also removed the assumption that e is regular in a Levi subalgebra. I thank him for his interest in my old result, and for the suggestion that it be published to supply part of the general proof.

References

[1] R. Hotta, T.A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977) 113-127.
[2] J.E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, Rhode Island, 1995.
[3] G.I. Lehrer, T. Shoji, On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. Ser. A 49 (3) (1990) 449-485.
[4] G. Lusztig, An induction theorem for Springer's representations, in: Representation Theory of Algebraic Groups and Quantum Groups, in: Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Kinokuniya, 2004, pp. 253-259.
[5] T. Shoji, Geometry of orbits and Springer correspondence, in: Orbites unipotentes et représentations, I, in: Astérisque, vol. 168, Soc. Math. de France, Paris, 1988, pp. 61-140.
[6] L. Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963) 57-64.
[7] E. Sommers, Exterior powers of the reflection representation in Springer theory, arXiv:1008.1180.
[8] E. Sommers, P. Trapa, The adjoint representation in rings of functions, Represent. Theory 1 (1997) 182-189.
[9] N. Spaltenstein, On the reflection representation in Springer's theory, Comment. Math. Helv. 66 (4) (1991) 618-636.
[10] R. Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960) 616-618.

[^0]: E-mail address: anthony.henderson@sydney.edu.au.
 1 The author's research is supported by ARC grant DP0985184.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2010.09.015

[^1]: 2 The details may be found in the preprint version of this Note, arXiv:1001.3164.

