

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Group Theory/Lie Algebras

Exterior powers of the reflection representation in the cohomology of Springer fibres

Les puissances extérieures de la représentation géométrique dans la cohomologie des fibres de Springer

Anthony Henderson¹

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

ARTICLE INFO ABSTRACT Article history: Let $H^*(\mathcal{B}_e)$ be the cohomology of the Springer fibre for the nilpotent element e in a simple Received 3 February 2010 Lie algebra g. Let $\Lambda^i V$ denote the *i*th exterior power of the reflection representation of W. Accepted after revision 15 September 2010 We determine the degrees in which $\Lambda^i V$ occurs in the graded representation $H^*(\mathcal{B}_e)$, Available online 25 September 2010 under the assumption that e is regular in a Levi subalgebra and satisfies a certain extra condition which holds automatically if $\mathfrak g$ is of type A, B, or C. This partially verifies a Presented by Gérard Laumon conjecture of Lehrer and Shoji. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. RÉSUMÉ

Soit $H^*(\mathcal{B}_e)$ la cohomologie de la fibre de Springer pour l'élément nilpotent *e* de l'algèbre de Lie simple g. Soit $\Lambda^i V$ la *i*-ème puissance extérieure de la représentation géométrique de *W*. Nous trouvons les degrés des contributions de $\Lambda^i V$ à la représentation graduée $H^*(\mathcal{B}_e)$, si *e* est régulier dans une sous-algèbre de Levi et satisfait à une autre condition qui est vraie si g est de type A, B, ou C. Ce résultat démontre partiellement une conjecture de Lehrer et Shoji.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \mathfrak{g} be a simple complex Lie algebra of rank ℓ . Let W denote the Weyl group of \mathfrak{g} , and let V be the reflection representation of W. It is well known that the exterior powers $\Lambda^i V$, for $i = 0, 1, ..., \ell$, are inequivalent irreducible representations of W, each of which is self-dual.

Let *e* be a nilpotent element of g. The Springer fibre \mathcal{B}_e is the variety of Borel subalgebras of g containing *e*. Let $H^*(\mathcal{B}_e)$ denote the graded cohomology ring of \mathcal{B}_e with complex coefficients; the cohomology lives solely in even degrees, so $H^*(\mathcal{B}_e)$ is commutative. We have the Springer representation of *W* on each $H^{2j}(\mathcal{B}_e)$ (see [5], [2, Chapter 9]). Let *s* (depending on *e*) denote the multiplicity of the irreducible representation *V* in the total representation $H^*(\mathcal{B}_e)$. Let m_1, m_2, \ldots, m_s be the multiset of nonnegative integers, listed in increasing order, which are the halved degrees of the occurrences of *V* in the graded representation $H^*(\mathcal{B}_e)$. That is, we have by definition $\sum_i \dim(H^{2j}(\mathcal{B}_e) \otimes V)^W q^j = q^{m_1} + q^{m_2} + \cdots + q^{m_s}$.

E-mail address: anthony.henderson@sydney.edu.au.

¹ The author's research is supported by ARC grant DP0985184.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.09.015

In the special case e = 0, it is well known (see [5, §5]) that $H^*(\mathcal{B})$ is isomorphic to the coinvariant algebra $C^*(W)$ of W, that $s = \ell$, and that m_1, \ldots, m_ℓ are the exponents of W. More generally, if e is a regular nilpotent in a Levi subalgebra of semisimple rank r, then it was proved by Lehrer and Shoji in [3, Theorem 2.4] (see also [9]) that $s = \ell - r$ and that m_1, \ldots, m_s are the coexponents of the corresponding parabolic hyperplane arrangement, in the sense of Orlik and Solomon. See [8] for some other related interpretations of these coexponents. For \mathfrak{g} of classical type and general e, the numbers m_1, m_2, \ldots, m_s were calculated by Spaltenstein in [9, Propositions 1.6–1.9].

Lehrer and Shoji conjectured that, at least in the parabolic case which they considered, the occurrences of each exterior power $\Lambda^i V$ in $H^*(\mathcal{B}_e)$ were also controlled in a natural way by m_1, m_2, \ldots, m_s .

Conjecture 1.1. (See [3, Conjecture 8.3].) Suppose that *e* is a regular nilpotent in a Levi subalgebra. Then for any $i = 0, 1, ..., \ell$, we have $\sum_{j} \dim(H^{2j}(\mathcal{B}_e) \otimes \Lambda^i V)^W q^j = e_i(q^{m_1}, q^{m_2}, ..., q^{m_s})$ (the ith elementary symmetric polynomial in $q^{m_1}, q^{m_2}, ..., q^{m_s}$, which is defined to be zero if i > s).

The e = 0 case of this conjecture had already been proved by Solomon in [6]; indeed, he proved the stronger statement that the algebra $(C^*(W) \otimes \Lambda^* V)^W$ is a free exterior algebra on $(C^*(W) \otimes V)^W$.

The main result of this Note is the following generalization of Solomon's result, which implies various cases of Conjecture 1.1:

Theorem 1.2. Suppose that *e* is regular in a Levi subalgebra of \mathfrak{g} , and define *s* and m_1, \ldots, m_s as above. Also suppose that there is a parabolic subgroup W_K of W such that the following two conditions hold:

- (1) There exist invariant polynomials $f_1, f_2, ..., f_s \in (S^*V)^W$, homogeneous of degrees $m_1 + 1, m_2 + 1, ..., m_s + 1$, whose restrictions to the reflection representation V_K of W_K form a set of fundamental invariants for W_K .
- (2) The nilpotent orbit of e intersects the nilradical of the parabolic subalgebra \mathfrak{p}_K associated to W_K .

(See Section 2 for the definitions of V_K and \mathfrak{p}_K .) Then the algebra $(H^*(\mathcal{B}_e) \otimes \Lambda^* V)^W$ is a free exterior algebra on $(H^*(\mathcal{B}_e) \otimes V)^W$. More precisely, the natural homomorphism $\psi : \Lambda^*((H^*(\mathcal{B}_e) \otimes V)^W) \to (H^*(\mathcal{B}_e) \otimes \Lambda^* V)^W$ is an isomorphism.

Here the domain and codomain of ψ are $(\mathbb{N} \times \mathbb{N})$ -graded algebras over \mathbb{C} , where the (i, j)-components are $\Lambda^i((H^{2j}(\mathcal{B}_e) \otimes V)^W)$ and $(H^{2j}(\mathcal{B}_e) \otimes \Lambda^i V)^W$ respectively, and in both cases the algebra multiplication is graded-commutative with respect to the \mathbb{N} -grading labelled by i; the homomorphism ψ is induced by the inclusion of the subspace $(H^*(\mathcal{B}_e) \otimes V)^W$ in $(H^*(\mathcal{B}_e) \otimes \Lambda^* V)^W$. Since the graded degrees of this subspace are $(1, m_1), (1, m_2), \ldots, (1, m_s)$, the statement that ψ is an isomorphism implies Conjecture 1.1.

Simple calculations² verify the following results:

Proposition 1.3. If g is of type A, then the assumptions of Theorem 1.2 hold for any e.

Proposition 1.4. If g is of type B or C, then the assumptions of Theorem 1.2 hold for any e which is regular in a Levi subalgebra.

Hence Conjecture 1.1 is proved in types A–C. By contrast, suppose that g is of type D₄ and *e* has Jordan type (3^21^2) in the natural representation on \mathbb{C}^8 . Then *e* is regular in a Levi subalgebra of type A₂, but we have $m_2 = 2$ and there are no *W*-invariant polynomials of degree 3, so condition (1) of Theorem 1.2 cannot be satisfied.

2. Proof of Theorem 1.2

Continue the notation of the introduction. Let $\mathfrak{h} \subset \mathfrak{b}$ be a Cartan subalgebra and Borel subalgebra of \mathfrak{g} , and let $\Pi \subset \Phi^+ \subset \Phi$ be the corresponding set of simple roots, positive roots, and roots. We identify W with the subgroup of $GL(\mathfrak{h})$ generated by the simple reflections s_{α} for $\alpha \in \Pi$; the reflection representation V of W is merely \mathfrak{h} itself.

Let $J \subseteq \Pi$ be a subset of size r, and set $s = \ell - r$. We have a Levi subalgebra \mathfrak{l}_J and parabolic subalgebra \mathfrak{p}_J containing \mathfrak{h} and \mathfrak{b} respectively, a parabolic subsystem Φ_J of Φ , and a parabolic subgroup W_J of W. Define $V^J = \bigcap_{\alpha \in J} \ker(\alpha) = V^{W_J}$. We write V_J for the unique W_J -invariant complement to V^J in V, which is the reflection representation of W_J . Note that dim $V^J = s$ and dim $V_J = r$. Let \mathcal{A}^J and \mathcal{A}_J be the hyperplane arrangements in V^J and V_J respectively induced by the root hyperplanes in V.

We assume for the remainder of the section that *e* is parabolic of type *J*, meaning that the orbit of *e* contains the regular nilpotent elements of \mathfrak{l}_J . As mentioned in the introduction, Lehrer and Shoji proved in this case that $\sum_j \dim(H^{2j}(\mathcal{B}_e) \otimes V)^W q^j = q^{m_1} + q^{m_2} + \cdots + q^{m_s}$, where m_1, \ldots, m_s are the coexponents of the arrangement \mathcal{A}^J . (See [3, Theorem 2.4]; the missing case in type D is covered by the results of Spaltenstein [9].)

An important special feature of the parabolic case is Lusztig's Induction Theorem for Springer representations.

 $^{^2\,}$ The details may be found in the preprint version of this Note, arXiv:1001.3164.

Theorem 2.1. (See [4].) The representation of W on $H^*(\mathcal{B}_e)$, neglecting the grading, is isomorphic to the induction $\operatorname{Ind}_{W_J}^W(\mathbb{C})$ of the trivial representation of W_J .

Corollary 2.2. We have dim $(H^*(\mathcal{B}_e) \otimes \Lambda^* V)^W = 2^s$, so the domain and codomain of ψ have the same dimension.

Proof. By Frobenius Reciprocity, we know that $\dim(\operatorname{Ind}_{W_J}^W(\mathbb{C}) \otimes \Lambda^* V)^W = \dim(\Lambda^* V)^{W_J}$. From the fact that $(\Lambda^* V)^{s_\alpha} = \Lambda^*(\ker(\alpha))$ for all $\alpha \in J$ one deduces $(\Lambda^* V)^{W_J} = \Lambda^*(V^J)$, and the corollary follows. \Box

So to prove Theorem 1.2, it suffices to show that the homomorphism ψ is injective. Since the domain is an exterior algebra, this will follow if we can show that $\psi(\Lambda^s((H^*(\mathcal{B}_e) \otimes V)^W)) \neq 0$.

Using the *W*-equivariant isomorphism of *V* with its dual, we will identify the symmetric algebra S^*V with the ring of polynomial functions on *V*. It is well known that the invariant subring $(S^*V)^W$ is freely generated by ℓ homogeneous polynomials, called fundamental invariants for *W*. The coinvariant algebra $C^*(W)$ of *W* is the quotient S^*V/I , where *I* is the ideal generated by these fundamental invariants.

Now there is a canonical (degree-doubling) W-equivariant algebra homomorphism $S^*V \to H^*(\mathcal{B})$ which identifies $H^*(\mathcal{B})$ with $C^*(W)$ (see [5, §5]). Composing this with the natural homomorphism $H^*(\mathcal{B}) \to H^*(\mathcal{B}_e)$, which is W-equivariant by [9, Lemma 1.4] (this fact in characteristic p was [1, Theorem 1.1]), we obtain a W-equivariant homomorphism $\varphi: S^*V \to H^*(\mathcal{B}_e)$. Note that the image of φ is contained in the subspace $H^*(\mathcal{B}_e)^{A(e)}$ of invariants for the component group of the centralizer of e in the adjoint group of \mathfrak{g} ; in particular, φ is not surjective in general. However, it may happen that the induced map $(S^*V \otimes V)^W \to (H^*(\mathcal{B}_e) \otimes V)^W$ is surjective even if φ is not. We will see that this occurs under the assumptions of Theorem 1.2, which means that a calculation with polynomials on V suffices to prove what we want.

Henceforth we let $K \subseteq \Pi$ be a subset satisfying conditions (1) and (2) of Theorem 1.2. Note that condition (1) entails |K| = s. Choose a basis v_1, v_2, \ldots, v_ℓ of V such that v_1, \ldots, v_s is a basis of V_K . Since the exterior derivative $S^*V \rightarrow S^*V \otimes V : f \mapsto \sum \frac{\partial f}{\partial v_\ell} \otimes v_j$ is W-equivariant, we have the following s elements of $(H^*(\mathcal{B}_e) \otimes V)^W$:

$$\sum_{j=1}^{n} \varphi\left(\frac{\partial f_1}{\partial v_j}\right) \otimes v_j, \sum_{j=1}^{n} \varphi\left(\frac{\partial f_2}{\partial v_j}\right) \otimes v_j, \dots, \sum_{j=1}^{n} \varphi\left(\frac{\partial f_s}{\partial v_j}\right) \otimes v_j.$$

We can prove both that these form a basis of $(H^*(\mathcal{B}_e) \otimes V)^W$, and that $\psi(\Lambda^s((H^*(\mathcal{B}_e) \otimes V)^W)) \neq 0$ as required, by proving the single fact that $\varphi(\Delta) \neq 0$, where Δ is the determinant of the $s \times s$ matrix $(\frac{\partial f_a}{\partial v_b})$, with a and b ranging from 1 to s. Since v_1, \ldots, v_s span the reflection representation of W_K , we have $w\Delta = \varepsilon(w)\Delta$ for all $w \in W_K$. This forces Δ to be divisible by the polynomial $\pi_K = \prod_{\beta \in \Phi_K^+} \beta$. Condition (1) tells us that on restricting to V_K , Δ becomes the Jacobian matrix of the fundamental invariants of W_K , which is well known to be a nonzero scalar multiple of the restriction to V_K of π_K (see [10]). So Δ is a nonzero scalar multiple of π_K , and it suffices to prove that $\varphi(\pi_K) \neq 0$.

By condition (2), we may suppose that e lies in the nilradical of \mathfrak{p}_K . Then any Borel subalgebra contained in \mathfrak{p}_K must contain e, so we have an inclusion $\mathcal{B}^K \hookrightarrow \mathcal{B}_e$, where \mathcal{B}^K denotes the variety of Borel subalgebras contained in \mathfrak{p}_K , which can be identified with the flag variety of \mathfrak{l}_K . Hence it suffices to prove that π_K is not in the kernel of the composition $S^*V \to H^*(\mathcal{B}) \to H^*(\mathcal{B}^K)$. But this composition is the canonical homomorphism identifying $C^*(W_K)$ with $H^*(\mathcal{B}^K)$, which maps π_K to a generator of the top-degree cohomology of \mathcal{B}^K (compare [1, Proposition 1.4], which uses exactly this argument in the case when e lies in the Richardson orbit of \mathfrak{p}_K). This completes the proof of Theorem 1.2.

Acknowledgements

The main result of this Note, Theorem 1.2, dates from 1997, when I was a student at the University of Sydney, supervised by Gus Lehrer. As the reader will observe, it is indebted to Lehrer's ideas, and I thank him for his help and encouragement. I did not publish this result at the time, since it did not prove the motivating Conjecture 1.1 in general. Recently Eric Sommers [7] has completed the proof of Conjecture 1.1 by a different method, and also removed the assumption that *e* is regular in a Levi subalgebra. I thank him for his interest in my old result, and for the suggestion that it be published to supply part of the general proof.

References

- [1] R. Hotta, T.A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977) 113–127.
- [2] J.E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, Rhode Island, 1995.
- [3] G.I. Lehrer, T. Shoji, On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. Ser. A 49 (3) (1990) 449-485.
- [4] G. Lusztig, An induction theorem for Springer's representations, in: Representation Theory of Algebraic Groups and Quantum Groups, in: Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Kinokuniya, 2004, pp. 253–259.

- [5] T. Shoji, Geometry of orbits and Springer correspondence, in: Orbites unipotentes et représentations, I, in: Astérisque, vol. 168, Soc. Math. de France, Paris, 1988, pp. 61-140.
- [6] L. Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963) 57–64.
 [7] E. Sommers, Exterior powers of the reflection representation in Springer theory, arXiv:1008.1180.
- [8] E. Sommers, P. Trapa, The adjoint representation in rings of functions, Represent. Theory 1 (1997) 182–189.
 [9] N. Spaltenstein, On the reflection representation in Springer's theory, Comment. Math. Helv. 66 (4) (1991) 618–636.
- [10] R. Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960) 616-618.