Mathematical Analysis

How likely is Buffon's ring toss to intersect a planar Cantor set?

Quelles sont les chances pour un cercle de Buffon lancé sur le plan de faire l'intersection avec une voisinage d'un ensemble de Cantor?

Matthew Bond
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

A R T I C L E I N F O

Article history:

Received 13 April 2009
Accepted 3 August 2010
Presented by Gilles Pisier

Abstract

In Bateman and Volberg (2008) [1], it was shown that the n-th partial $1 / 4$ Cantor in the plane set decays in Favard length no faster than $C \frac{\log n}{n}$. In Bond and Volberg (2008) [2], the so-called circular Favard length of the same set is studied, and the same estimate is shown to persist when the circle has radius $r \geqslant C n$. By considering characteristic functions, the result of Bond and Volberg (2008) [2] naturally leads to a conjecture which (if true) would imply the sharpness of the $L \log \log L$ boundedness of the circular maximal operator proved by Seeger, Tao and Wright (2005) [3].

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans Bateman et Volberg (2008) [1], on a démontré que la longueur de Favard de la stage n-ième d'ensemble $1 / 4$ de Cantor décroit au plus comme $C \frac{\log n}{n}$. Dans Bond et Volberg (2008) [2], on a introduit une longueur circulaire de Favard, et on a démontré que les même estimations sont valable, au moins si le rayon du cercle satisfait $r \geqslant C n$. Le résulat de Bond et Volberg (2008) [2] mene naturallement à une hypothèse qui (si soit valable) donne la preuve que le résultat concernant la fonction maximale circulaire de Seeger, Tao et Wright (2005) [3] est exact.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Definitions

The four-corner Cantor set \mathcal{K} is constructed by replacing the unit square by four sub-squares of side length $1 / 4$ at its corners, and iterating this operation in a self-similar manner in each sub-square. After the nth iteration of the similarity maps, let us call the resulting set \mathcal{K}_{n}.

The Favard length, or Buffon needle probability, of a planar set E is defined by

$$
\begin{equation*}
\operatorname{Fav}(E)=\frac{1}{\pi} \int_{0}^{\pi}\left|\operatorname{Proj}_{\theta}(E)\right| \mathrm{d} \theta \tag{1}
\end{equation*}
$$

where $\operatorname{Proj}_{\theta}$ denotes the orthogonal projection from \mathbb{R}^{2} to direction with angle θ, and $|A|$ denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}$.

[^0]In [2], a related circular Favard length, or Buffon noodle probability, was studied. To get circular Favard length Fav σ_{σ} instead of usual Favard length Fav, orthogonal projection along the line is replaced by projection along a circular arc tangent to the line. Specifically, define

$$
\begin{equation*}
F_{r}(y):=r-\sqrt{r^{2}-y^{2}} \tag{2}
\end{equation*}
$$

Also define $\sigma_{0}(x, y):=\left(x-F_{r}(y), y\right)$, and $\sigma_{\theta}:=R_{-\theta} \circ \sigma_{0} \circ R_{\theta}$, where R_{θ} is clockwise rotation by the angle $\theta .{ }^{1}$ Finally, let

$$
\operatorname{Fav}_{\sigma}\left(\mathcal{K}_{n}\right):=\frac{1}{\pi} \int_{0}^{\pi}\left|\operatorname{Proj}_{\theta}\left(\sigma_{\theta}\left(\mathcal{K}_{n}\right)\right)\right| \mathrm{d} \theta
$$

For any Cantor square $Q \subset \mathcal{K}_{n}$, let $\chi_{Q, \theta}:=\chi_{\operatorname{Proj}_{\theta}\left(\sigma_{\theta}(Q)\right)}$.

2. The result and the main approach

One way of studying Favard length of structured discrete sets like \mathcal{K}_{n} is through a certain projection multiplicity function $f_{n, \theta, \sigma}$ (as used in [1,2], and others):

$$
f_{n, \theta, \sigma}:=\sum_{\text {Cantor squares }}^{Q \subset \mathcal{K}_{n}} \chi_{Q, \theta} .
$$

This is because $\operatorname{Proj}_{\theta}\left(\sigma_{\theta}\left(\mathcal{K}_{n}\right)\right)=\operatorname{supp}\left(f_{n, \theta, \sigma}\right)$, which we will also call $E_{n, \theta, \sigma}$. The idea is that as the similarities are iterated, the squares stack in a self-similar manner, and the L^{2} norms of $f_{n, \theta, \sigma}$ should grow, while $\left|E_{n, \theta, \sigma}\right|$ should decrease. However, the Cauchy inequality describes a limitation on this effect: for any fixed interval of angles I,

$$
\begin{equation*}
\int_{I}\left|E_{n, \theta, \sigma}\right| \geqslant \frac{\left(\int_{I} \int_{\mathbb{R}} f_{n, \theta, \sigma} \mathrm{~d} x \mathrm{~d} \theta\right)^{2}}{\left(\int_{I} \int_{\mathbb{R}} f_{n, \theta, \sigma}^{2} \mathrm{~d} x \mathrm{~d} \theta\right)} \tag{3}
\end{equation*}
$$

The idea is to pick $\approx \log n$ many disjoint intervals I_{j} such that each such estimate gives

$$
\begin{equation*}
\int_{I_{j}}\left|E_{n, \theta, \sigma}\right| \mathrm{d} \theta \geqslant \frac{C}{n} . \tag{4}
\end{equation*}
$$

Summing over j, the result will be:
Theorem 2.1. For each $c>0$, there exists $C>0$ such that whenever $r \geqslant c n, \operatorname{Fav}_{\sigma}\left(\mathcal{K}_{n}\right) \geqslant C \frac{\log n}{n}$. Further, we may interpret $\operatorname{Fav}\left(\mathcal{K}_{n}\right)$ to be $\operatorname{Fav}_{\sigma}\left(\mathcal{K}_{n}\right)$ in the case $r=\infty$.

Good intervals I_{j} can be found near $\theta=\arctan (1 / 2)$, because on this direction, \mathcal{K}_{n} orthogonally projects onto a single connected interval, and the projected squares intersect only on their endpoints. These almost-disjoint projected intervals induce a 4 -adic structure on the interval. Let us rotate the axes and redefine the old $\arctan (1 / 2)$ direction to be our new $\theta=0$ direction.

We will then let $I_{j}:=\left[\arctan \left(4^{-j-1}\right), \arctan \left(4^{-j}\right)\right], 3<j<\log n$. Then $I_{\log n}$ will be the closest direction to 0 , and it's reasonable to think that on average, each time j decreases by $1, I_{j}$ will grow by the factor 4 , and $\left|E_{n, \theta, \sigma}\right|$ will decay no more than by a factor of $1 / 4$, resulting in estimate (4).

Trivially, $\left[\int_{I_{j}} \int f_{n, \theta, \sigma} \mathrm{~d} x \mathrm{~d} \theta\right]^{2} \leqslant C 4^{-2 j}$, while

$$
f_{n, \theta, \sigma}^{2}=\sum_{Q, Q^{\prime}} \chi_{Q, \theta} \chi_{Q^{\prime}, \theta}=\sum_{Q \neq Q^{\prime}} \chi_{Q, \theta} \chi_{Q^{\prime}, \theta}+\sum_{Q} \chi_{Q, \theta}^{2} .
$$

Integrating over $I_{j} \times \mathbb{R}$, the latter diagonal sum becomes $C 4^{-j} \leqslant C n 4^{-2 j}$ (the inequality uses $j<\log n$). When estimating the other integral, things become combinatorial - most of these terms are identically 0 in $I_{j} \times \mathbb{R}$. So define $A_{j, k}$ to be the set of pairs $P=\left(Q, Q^{\prime}\right)$ of Cantor squares such that there exists $\theta \in[0, \pi]$ such that the σ_{θ} images of the centers q and q^{\prime} of Q and Q^{\prime} have vertical distance $4^{-k-1} \leqslant\left|y_{\sigma_{\theta}(q)}-y_{\sigma_{\theta}\left(q^{\prime}\right)}\right| \leqslant 4^{-k}$ and satisfy the condition on horizontal spacing

$$
\begin{equation*}
4^{-j-1} \leqslant\left|\frac{x_{\sigma_{\theta}(q)}-x_{\sigma_{\theta}\left(q^{\prime}\right)}}{y_{\sigma_{\theta}(q)}-y_{\sigma_{\theta}\left(q^{\prime}\right)}}\right| \leqslant 4^{-j} . \tag{5}
\end{equation*}
$$

[^1]We can think of 4^{-j} as being $\tan (\theta)$ for θ such that the σ_{θ} images of the squares Q, Q^{\prime} have overlap in the projection onto θ. In [1], it was proved that

$$
\begin{equation*}
\left|A_{j, k}\right| \leqslant C 4^{2 n-k-2 j} \tag{6}
\end{equation*}
$$

when $r=\infty$. To get the same estimate for $c n \leqslant r<\infty$ as shown in [2], it suffices to compare the two cases with an application of the following lemma ${ }^{2}$:

Lemma 2.2. Let $\varepsilon>0$ be small enough. Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be such that $\operatorname{Lip}(T-I d)<\varepsilon$. Then $\forall z, w \in \mathbb{C}$,

$$
|\arg (z-w)-\arg (T(z)-T(w))|<2 \varepsilon(\bmod 2 \pi)
$$

This is where the condition $r>c n$ is used: to make the lemma sufficient for the purposes of relation 5 . For any $P=$ $\left(Q, Q^{\prime}\right) \in A_{j, k}$, it suffices to have the integral $v_{P}:=\int_{0}^{\pi} \int_{\mathbb{R}} \chi_{Q, \theta} \chi_{Q^{\prime}, \theta} \mathrm{d} x \mathrm{~d} \theta$ satisfy the estimate

$$
\begin{equation*}
v_{P} \leqslant C 4^{k-2 n} \tag{7}
\end{equation*}
$$

since the integrand is supported only for angles belonging to I_{j-1}, I_{j}, and I_{j+1}. So we fix j and sum over k to get

$$
\begin{aligned}
& \int_{I_{j} \times \mathbb{R}} \sum_{Q \neq Q^{\prime}} \chi_{Q, \theta} \chi_{Q^{\prime}, \theta} \mathrm{d} \theta \mathrm{~d} x \\
& \quad \leqslant \sum_{k=1}^{n-j+1} \max \left\{v_{P}: P \in A_{j^{\prime}, k} \text { for some } j^{\prime}=j-1, j, j+1\right\}\left(\left|A_{j-1, k}\right|+\left|A_{j, k}\right|+\left|A_{j+1, k}\right|\right) \leqslant C n 4^{-2 j} .
\end{aligned}
$$

Estimate (7) is elementary when $r=\infty$. When $c n \leqslant r<\infty$, we exploit a relationship between circular Favard length and the area of the set of centers of the intersecting arcs, i.e., $(r+x) \mathrm{d} x \mathrm{~d} \theta \approx r \mathrm{~d} x \mathrm{~d} \theta$ implies that $\nu_{P} \approx \frac{1}{r}|A|$, where A is the intersection of two annuli centered at q and q^{\prime}, both having inner radius $r-4^{-n}$ and outer radius $r+4^{-n}$. One can bound A by a rectangle and get the desired estimate by the Mean Value Theorem, for example. This concludes the proof of Theorem 2.1.

3. Sharpness of the $L \log \log L$ bound on the circular maximal operator

Let $c_{m}(z):=\left\{\zeta:|z-\zeta|=4^{-m}\right\}$, and $M f(z):=\sup _{m \geqslant 0} 4^{m} \int_{c_{m}(z)}|f(\zeta)||\mathrm{d} \zeta|$. In [3], it was proved that $M: L(\log \log L) \rightarrow$ $L^{1, \infty}$ is bounded, and then suggested that Favard length estimates could prove the sharpness. While this does not seem to be true, it still seems likely that a positive answer may be given by measuring the level sets of $f_{n, \theta, \sigma}$. Here and in [2], only the set $f_{n, \theta, \sigma} \geqslant 1$ was measured.

It is enough to show that for each $\varepsilon>0, M: L(\log \log L)^{1-\varepsilon} \rightarrow L^{1, \infty}$ is not bounded, which follows if one can construct sets $E_{n},\left|E_{n}\right| \ll 1$, such that $\sup _{t} t\left|\left\{z: M \chi_{E_{n}}(z) \geqslant t\right\}\right| \gg\left|E_{n}\right|\left(\log \log \frac{1}{\left|E_{n}\right|}\right)^{1-\varepsilon}$.

The idea: $m<n$ will vary. Take a contraction $\widetilde{E_{n}}$ of \mathcal{K}_{n} (by the factor 4^{-n}), and then take an $\varepsilon \approx 4^{-2 n}$ neighborhood of this, called E_{n}. On a certain set of distance about 4^{-m} from E_{n}, there is a relatively large set of centers of circles of radius 4^{-m} which intersect $\widetilde{E_{n}}$, so that on this set, $M \chi_{E_{n}}$ is relatively large. Note that $\left|E_{n}\right| \approx 4^{n} \cdot 4^{-4 n}=4^{-3 n}$, so that $\log \log \frac{1}{\left|E_{n}\right|} \approx \log n$.

Let $\mu_{n, m}:=\left\{z: M \chi_{E_{n}} \geqslant 4^{m-2 n} /(2 \pi)\right\}$. Let $H_{n, m}:=\left\{z: c_{m}(z) \cap \widetilde{E_{n}} \neq \emptyset\right\}$. Then $H_{n, m} \subset \mu_{n, m}, H_{n, m} \cap H_{n, m^{\prime}}=\emptyset$ for $m \neq m^{\prime}$, and $\left|H_{n, m}\right| \geqslant C 4^{-m} \operatorname{Fav}_{\sigma}\left(\widetilde{E_{n}}\right) \geqslant C \frac{\log n}{n} 4^{-n-m}$.

Thus $\left|\bigcup_{m=0}^{n} \mu_{n, m}\right| \geqslant \sum_{m=0}^{n}\left|H_{n, m}\right| \geqslant \sum_{m=0}^{n} C \frac{\log n}{n} 4^{-n-m}$. It would be nice if we could instead write the following for, say, $M=\alpha n$, for some constant $\alpha>0$:

$$
\begin{equation*}
\left|\mu_{n, M}\right| \geqslant \sum_{m=0}^{M} C \frac{\log n}{n} 4^{-n-M} \geqslant C \alpha \log n 4^{-n} 4^{-M} \tag{8}
\end{equation*}
$$

because then

$$
\frac{4^{M-2 n}}{2 \pi}\left|\left\{z: M \chi_{E_{n}} \geqslant 4^{M-2 n} /(2 \pi)\right\}\right| \geqslant C 4^{-3 n} \log n \geqslant C\left|E_{n}\right| \log \log \frac{1}{\left|E_{n}\right|} \gg\left|E_{n}\right|\left(\log \log \frac{1}{\left|E_{n}\right|}\right)^{1-\varepsilon}
$$

[^2]for some $\lambda<\varepsilon, \beta \in[0,2 \pi]$. So $\arg (T(z)-T(w))=\arg \left(\lambda e^{i \beta}+e^{i \theta}\right)$. Then $|\alpha| \leqslant \hat{\alpha}$, where $\tan (\hat{\alpha})=\frac{\varepsilon}{1-\varepsilon} \Rightarrow|\alpha|<2 \varepsilon$.

Let us state how one might get this. We can call by $Q_{j}\left(j=1, \ldots, 4^{n}\right)$, the squares composing $\widetilde{E_{n}}$, and let $H_{n, m, M}:=$ $\left\{z:\left(\# j: c_{m}(z) \cap Q_{j} \neq \emptyset\right) \geqslant 4^{M-m}\right\}$. Then $H_{n, m, M} \subset \mu_{n, M}$.

Relation (8) would then follow if we had $\left|H_{n, m, M}\right| \geqslant C \frac{\log n}{n} 4^{-n-M}$. So we have this strong conjecture:
There exist $\alpha, C>0$ such that for infinitely many $n,\left|\left\{(x, \theta) \in \mathbb{R} \times[0,2 \pi]: f_{n, \theta, \sigma}(x) \geqslant 4^{m}\right\}\right| \geqslant C \frac{\log n}{n} 4^{-m}$ for all $m \leqslant \alpha n$. Alternately, a weak conjecture:
For all $\varepsilon>0$, there exist $C>0$ so that if

$$
\nu(n):=\#\left\{m \leqslant n:\left|\left\{(x, \theta) \in \mathbb{R} \times[0,2 \pi]: f_{n, \theta, \sigma}(x) \geqslant 4^{m}\right\}\right| \geqslant C \frac{(\log n)^{1-\varepsilon}}{n} 4^{-m}\right\}
$$

then $\limsup _{n} \frac{\nu(n)}{n}(\log n)^{\varepsilon}>0$.

References

[1] M. Bateman, A. Volberg, An estimate from below for the Buffon needle probability of the four-corner Cantor set, arXiv:math/0807.2953v1, 2008, pp. 1-11.
[2] M. Bond, A. Volberg, Estimates from below of the Buffon noodle probability for undercooked noodles, arXiv:math/0811.1302v1, 2008, pp. 1-10.
[3] A. Seeger, T. Tao, J. Wright, Notes on the lacunary spherical maximal function, preprint, 2005, pp. 1-14.

[^0]: E-mail address: bondmatt@msu.edu.

 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.08.002

[^1]: ${ }^{1}$ Note that if we replace σ with the identity map, we are in the setting of [1]. We will often appeal to the $\sigma=I d$ case for intuition, while noting that the content of [2] is that the arguments of [1] carry over into [2] when $c n \leqslant r<\infty$ with the only difference being a change in the universal constants.

[^2]: ${ }^{2}$ Proof of Lemma 2.2: Write $z-w=\rho e^{i \theta}$, and let $\alpha:=\arg (z-w)-\arg (T(z)-T(w))$.

 $$
 \arg (T(z)-T(w))=\arg ((T-I d)(z)-(T-I d)(w)+(z-w))=\arg \left(\lambda \rho e^{i \beta}+\rho e^{i \theta}\right)
 $$

