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How likely is Buffon’s ring toss to intersect a planar Cantor set?

Quelles sont les chances pour un cercle de Buffon lancé sur le plan de faire l’intersection
avec une voisinage d’un ensemble de Cantor?
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In Bateman and Volberg (2008) [1], it was shown that the n-th partial 1/4 Cantor in the
plane set decays in Favard length no faster than C logn

n . In Bond and Volberg (2008) [2], the
so-called circular Favard length of the same set is studied, and the same estimate is shown
to persist when the circle has radius r � Cn. By considering characteristic functions, the
result of Bond and Volberg (2008) [2] naturally leads to a conjecture which (if true) would
imply the sharpness of the L log log L boundedness of the circular maximal operator proved
by Seeger, Tao and Wright (2005) [3].

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans Bateman et Volberg (2008) [1], on a démontré que la longueur de Favard de la stage
n-ième d’ensemble 1/4 de Cantor décroit au plus comme C logn

n . Dans Bond et Volberg
(2008) [2], on a introduit une longueur circulaire de Favard, et on a démontré que les
même estimations sont valable, au moins si le rayon du cercle satisfait r � Cn. Le résulat
de Bond et Volberg (2008) [2] mene naturallement à une hypothèse qui (si soit valable)
donne la preuve que le résultat concernant la fonction maximale circulaire de Seeger, Tao
et Wright (2005) [3] est exact.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Definitions

The four-corner Cantor set K is constructed by replacing the unit square by four sub-squares of side length 1/4 at its
corners, and iterating this operation in a self-similar manner in each sub-square. After the nth iteration of the similarity
maps, let us call the resulting set Kn .

The Favard length, or Buffon needle probability, of a planar set E is defined by

Fav(E) = 1

π

π∫
0

∣∣Projθ (E)
∣∣ dθ, (1)

where Projθ denotes the orthogonal projection from R
2 to direction with angle θ , and |A| denotes the Lebesgue measure of

a measurable set A ⊂ R.
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In [2], a related circular Favard length, or Buffon noodle probability, was studied. To get circular Favard length Favσ instead
of usual Favard length Fav, orthogonal projection along the line is replaced by projection along a circular arc tangent to the
line. Specifically, define

Fr(y) := r −
√

r2 − y2. (2)

Also define σ0(x, y) := (x − Fr(y), y), and σθ := R−θ ◦σ0 ◦ Rθ , where Rθ is clockwise rotation by the angle θ .1 Finally, let

Favσ (Kn) := 1

π

π∫
0

∣∣Projθ
(
σθ (Kn)

)∣∣ dθ.

For any Cantor square Q ⊂ Kn , let χQ ,θ := χProjθ (σθ (Q )) .

2. The result and the main approach

One way of studying Favard length of structured discrete sets like Kn is through a certain projection multiplicity function
fn,θ,σ (as used in [1,2], and others):

fn,θ,σ :=
∑

Cantor squares Q ⊂Kn

χQ ,θ .

This is because Projθ (σθ (Kn)) = supp( fn,θ,σ ), which we will also call En,θ,σ . The idea is that as the similarities are iterated,
the squares stack in a self-similar manner, and the L2 norms of fn,θ,σ should grow, while |En,θ,σ | should decrease. However,
the Cauchy inequality describes a limitation on this effect: for any fixed interval of angles I ,∫

I

|En,θ,σ | � (
∫

I

∫
R

fn,θ,σ dx dθ)2

(
∫

I

∫
R

f 2
n,θ,σ dx dθ)

. (3)

The idea is to pick ≈ logn many disjoint intervals I j such that each such estimate gives∫
I j

|En,θ,σ |dθ � C

n
. (4)

Summing over j, the result will be:

Theorem 2.1. For each c > 0, there exists C > 0 such that whenever r � cn, Favσ (Kn) � C logn
n . Further, we may interpret Fav(Kn) to

be Favσ (Kn) in the case r = ∞.

Good intervals I j can be found near θ = arctan(1/2), because on this direction, Kn orthogonally projects onto a single
connected interval, and the projected squares intersect only on their endpoints. These almost-disjoint projected intervals
induce a 4-adic structure on the interval. Let us rotate the axes and redefine the old arctan(1/2) direction to be our new
θ = 0 direction.

We will then let I j := [arctan(4− j−1),arctan(4− j)], 3 < j < log n. Then I logn will be the closest direction to 0, and it’s
reasonable to think that on average, each time j decreases by 1, I j will grow by the factor 4, and |En,θ,σ | will decay no
more than by a factor of 1/4, resulting in estimate (4).

Trivially, [∫I j

∫
fn,θ,σ dx dθ]2 � C4−2 j , while

f 2
n,θ,σ =

∑
Q ,Q ′

χQ ,θχQ ′,θ =
∑

Q �=Q ′
χQ ,θχQ ′,θ +

∑
Q

χ2
Q ,θ .

Integrating over I j ×R, the latter diagonal sum becomes C4− j � Cn4−2 j (the inequality uses j < log n). When estimating
the other integral, things become combinatorial – most of these terms are identically 0 in I j × R. So define A j,k to be the
set of pairs P = (Q , Q ′) of Cantor squares such that there exists θ ∈ [0,π ] such that the σθ images of the centers q and q′
of Q and Q ′ have vertical distance 4−k−1 � |yσθ (q) − yσθ (q′)| � 4−k and satisfy the condition on horizontal spacing

4− j−1 �
∣∣∣∣ xσθ (q) − xσθ (q′)

yσθ (q) − yσθ (q′)

∣∣∣∣ � 4− j. (5)

1 Note that if we replace σ with the identity map, we are in the setting of [1]. We will often appeal to the σ = Id case for intuition, while noting that
the content of [2] is that the arguments of [1] carry over into [2] when cn � r < ∞ with the only difference being a change in the universal constants.
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We can think of 4− j as being tan(θ) for θ such that the σθ images of the squares Q , Q ′ have overlap in the projection
onto θ . In [1], it was proved that

|A j,k| � C42n−k−2 j, (6)

when r = ∞. To get the same estimate for cn � r < ∞ as shown in [2], it suffices to compare the two cases with an
application of the following lemma2:

Lemma 2.2. Let ε > 0 be small enough. Let T : C → C be such that Lip(T − Id) < ε. Then ∀z, w ∈ C,∣∣arg(z − w) − arg
(
T (z) − T (w)

)∣∣ < 2ε(mod 2π).

This is where the condition r > cn is used: to make the lemma sufficient for the purposes of relation 5. For any P =
(Q , Q ′) ∈ A j,k , it suffices to have the integral νP := ∫ π

0

∫
R

χQ ,θχQ ′,θ dx dθ satisfy the estimate

νP � C4k−2n, (7)

since the integrand is supported only for angles belonging to I j−1, I j , and I j+1. So we fix j and sum over k to get∫
I j×R

∑
Q �=Q ′

χQ ,θχQ ′,θ dθ dx

�
n− j+1∑

k=1

max
{
νP : P ∈ A j′,k for some j′ = j − 1, j, j + 1

}(|A j−1,k| + |A j,k| + |A j+1,k|
)
� Cn4−2 j .

Estimate (7) is elementary when r = ∞. When cn � r < ∞, we exploit a relationship between circular Favard length
and the area of the set of centers of the intersecting arcs, i.e., (r + x)dx dθ ≈ r dx dθ implies that νP ≈ 1

r |A|, where A is
the intersection of two annuli centered at q and q′ , both having inner radius r − 4−n and outer radius r + 4−n . One can
bound A by a rectangle and get the desired estimate by the Mean Value Theorem, for example. This concludes the proof of
Theorem 2.1.

3. Sharpness of the L log log L bound on the circular maximal operator

Let cm(z) := {ζ : |z − ζ | = 4−m}, and M f (z) := supm�0 4m
∫

cm(z) | f (ζ )||dζ |. In [3], it was proved that M : L(log log L) →
L1,∞ is bounded, and then suggested that Favard length estimates could prove the sharpness. While this does not seem to
be true, it still seems likely that a positive answer may be given by measuring the level sets of fn,θ,σ . Here and in [2], only
the set fn,θ,σ � 1 was measured.

It is enough to show that for each ε > 0, M : L(log log L)1−ε → L1,∞ is not bounded, which follows if one can construct
sets En, |En| � 1, such that supt t|{z: MχEn (z) � t}| � |En|(log log 1

|En | )
1−ε .

The idea: m < n will vary. Take a contraction Ẽn of Kn (by the factor 4−n), and then take an ε ≈ 4−2n neighborhood
of this, called En . On a certain set of distance about 4−m from En , there is a relatively large set of centers of circles of
radius 4−m which intersect Ẽn , so that on this set, MχEn is relatively large. Note that |En| ≈ 4n · 4−4n = 4−3n , so that
log log 1

|En | ≈ log n.

Let μn,m := {z: MχEn � 4m−2n/(2π)}. Let Hn,m := {z: cm(z) ∩ Ẽn �= ∅}. Then Hn,m ⊂ μn,m , Hn,m ∩ Hn,m′ = ∅ for m �= m′ ,
and |Hn,m| � C4−mFavσ (Ẽn) � C logn

n 4−n−m .

Thus |⋃n
m=0 μn,m| � ∑n

m=0 |Hn,m| � ∑n
m=0 C logn

n 4−n−m . It would be nice if we could instead write the following for, say,
M = αn, for some constant α > 0:

|μn,M | �
M∑

m=0

C
logn

n
4−n−M � Cα log n 4−n4−M , (8)

because then

4M−2n

2π

∣∣{z: MχEn � 4M−2n/(2π)
}∣∣ � C4−3n logn � C |En| log log

1

|En| � |En|
(

log log
1

|En|
)1−ε

.

2 Proof of Lemma 2.2: Write z − w = ρeiθ , and let α := arg(z − w) − arg(T (z) − T (w)).

arg
(
T (z) − T (w)

) = arg
(
(T − Id)(z) − (T − Id)(w) + (z − w)

) = arg
(
λρeiβ + ρeiθ )

for some λ < ε,β ∈ [0,2π ]. So arg(T (z) − T (w)) = arg(λeiβ + eiθ ). Then |α| � α̂, where tan(α̂) = ε
1−ε ⇒ |α| < 2ε.
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Let us state how one might get this. We can call by Q j ( j = 1, . . . ,4n), the squares composing Ẽn , and let Hn,m,M :=
{z: (# j: cm(z) ∩ Q j �= ∅) � 4M−m}. Then Hn,m,M ⊂ μn,M .

Relation (8) would then follow if we had |Hn,m,M | � C logn
n 4−n−M . So we have this strong conjecture:

There exist α, C > 0 such that for infinitely many n, |{(x, θ) ∈ R × [0,2π ]: fn,θ,σ (x) � 4m}| � C logn
n 4−m for all m � αn.

Alternately, a weak conjecture:
For all ε > 0, there exist C > 0 so that if

ν(n) := #

{
m � n:

∣∣{(x, θ) ∈ R × [0,2π ]: fn,θ,σ (x) � 4m}∣∣ � C
(log n)1−ε

n
4−m

}
,

then lim sup
n

ν(n)

n
(log n)ε > 0.
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