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In this Note, our aim is to obtain Cramér’s upper bound for capacities induced by sublinear
expectations.
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r é s u m é

Dans cette Note, notre objet est d’obtenir la borne supérieure de Cramér pour les capacités
induites par des espérances sous-linéaires.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Le théorème de Cramér est connu comme un résultat fondamental dans la théorie des grandes déviations. Il est très utile
dans beaucoup de domaines.

Dans cette Note, nous nous intéressons à

E[·] = sup
Q ∈P

E Q [·],

où P est un ensemble de probabilités. En particulier, nous définissons V (A) = E[I A] = supQ ∈P E Q [I A], ∀A ∈ F . Bien evi-
demment, V est une capacité. L’objet principal de cette Note est d’obtenir la borne supérieure de Cramér pour cette capacité.

Voici notre résultat principal.

Théorème (la borne supérieure de Cramér). Soient {Xn;n � 1} une suite de variables aléatoires i.i.d. sous E[·]. Désignons Sn =
1
n

∑n
i=1 Xi , on a alors :

pour tous les ensembles fermés F ⊂ R,

lim sup
n→∞

1

n
log V (Sn ∈ F ) � − inf

x∈F
∧∗(x), (∗)

où ∧∗(x) := supλ∈R [λx − log E[eλX1 ]] est une fonction convexe de taux.
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1. Introduction

Cramér’s theorem has been widely been known for a long time as a fundamental result in large deviations. It is very
useful in many fields.

Since the paper (Artzner et al. [1]) on coherent risk measures, authors are more and more interested in sublinear ex-
pectations (and more generally, convex expectations, see Föllmer and Schied [3] and Frittelli and Rossaza Gianin [4]). By
Peng [7], we know that a sublinear expectation Ê can be represented as the upper expectation of a set of linear expecta-
tions {Eθ : θ ∈ Θ}, i.e., Ê[·] = supθ∈Θ Eθ [·]. In most cases, this set is often treated as an uncertain model of probabilities
{Pθ : θ ∈ Θ} and the notion of sublinear expectation provides a robust way to measure a risk loss X . In fact, nonlinear
expectation theory provides many rich, flexible and elegant tools.

In this Note, we are interested in

E[·] = sup
Q ∈P

E Q [·],

where P is a set of probability measures. Specially, set V (A) = E[I A] = supQ ∈P E Q [I A], ∀A ∈ F . Obviously, V is a capacity.
The main aim of this Note is to obtain Cramér’s upper bound for the capacity V .

This Note is organized as follows: in Section 2, we give some notions and lemmas that are useful in this Note. In
Section 3, we give the main result including the proof.

2. Preliminaries

We present some preliminaries in the theory of sublinear expectations. More details of this section can be found in Peng
[5–7].

Definition 2.1. Let Ω be a given set and let H be a linear space of real valued functions defined on Ω . We assume that all
constants are in H and that X ∈ H implies |X | ∈ H. H is considered as the space of our “random variables”. A nonlinear
expectation Ê on H is a functional Ê : H 	→ R satisfying the following properties: for all X , Y ∈ H, we have

(a) Monotonicity: If X � Y then Ê[X] � Ê[Y ].
(b) Constant preserving: Ê[c] = c.

The triple (Ω, H, Ê) is called a nonlinear expectation space (compare with a probability space (Ω, F , P )). We are mainly
concerned with sublinear expectation where the expectation Ê satisfies also

(c) Sub-additivity: Ê[X] − Ê[Y ] � Ê[X − Y ].
(d) Positive homogeneity: Ê[λX] = λÊ[X], ∀λ � 0.

If only (c) and (d) are satisfied, Ê is called a sublinear functional.

The following representation theorem for sublinear expectations is very useful (see Peng [6,7] for the proof):

Lemma 2.1. Let Ê be a sublinear functional defined on (Ω, H), i.e., (c) and (d) hold for Ê . Then there exists a family {Eθ : θ ∈ Θ} of
linear functionals on (Ω, H) such that

Ê[X] = max
θ∈Θ

Eθ [X]. (1)

If (a) and (b) also hold, then Eθ are linear expectations for θ ∈ Θ . If we make furthermore the following assumption: (H1) For each
sequence {Xn}∞n=1 ⊂ H such that Xn(ω) ↓ 0 for ω, we have Ê[Xn] ↓ 0. Then for each θ ∈ Θ , there exists a unique (σ -additive)
probability measure Pθ defined on (Ω,σ (H)) such that

Eθ [X] =
∫

Ω

X(ω)dPθ (ω), X ∈ H. (2)

In this Note, we are interested in the following sublinear expectation:

E[·] = sup
Q ∈P

E Q [·],

where P is a set of probability measures. Let Ω be a given set and let F be a σ -algebra. Define V (A) := E[I A] = supQ ∈P E Q [I A],
∀A ∈ F , then V is a capacity.

Let C(Rn) denote the space of continuous functions defined on Rn .
Now we recall some important notions of sublinear expectations distributions (see Peng [5–7]).
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Definition 2.2. Let X1 and X2 be two random variables in a sublinear expectation space (Ω, F , E). They are called identically
distributed, denoted by X1 ∼ X2, if for ϕ ∈ C(R), E[ϕ(X1)] and E[ϕ(X2)] exist, then we have

E
[
ϕ(X1)

] = E
[
ϕ(X2)

]
.

Definition 2.3. In a sublinear expectation space (Ω, F , E), a random vector Y = (Y1, . . . , Yn) is said to be independent of
another random vector X = (X1, . . . , Xm), if for ϕ ∈ C(Rm+n), E[ϕ(X, Y )] and E[E[ϕ(x, Y )]x=X ] exist, then we have

E
[
ϕ(X, Y )

] = E
[

E
[
ϕ(x, Y )

]
x=X

]
.

3. Main result

In this section, firstly let us present some notations and assumptions that are used in the following:
Define

x := −E[−X];
∧(λ) := log E

[
eλX]

, ∀λ ∈ R;
∧∗(x) := sup

λ∈R

[
λx − ∧(λ)

]
, ∀x ∈ R;

D∧ := {
λ: ∧(λ) < ∞}

.

We always assume that

(H2) If An ↑ Ω, then V (An) ↑ 1.

Now we list our main result.

Theorem (Cramér’s upper bound). Let a random sequence {Xn; n � 1} be identically distributed under E[·]. We also assume that each
Xn+1 is independent of (X1, . . . , Xn) for n = 1,2, . . . under E[·]. Denote Sn = 1

n

∑n
i=1 Xi . Then we have:

For any closed set F ⊂ R,

lim sup
n→∞

1

n
log V (Sn ∈ F ) � − inf

x∈F
∧∗(x), (∗)

where ∧∗(·) is a convex rate function.

The proof of the Theorem is a straightforward adaptation of the classical arguments, e.g., in Lemma 2.2.5 and Theorem
2.2.3 of Ref. [2].

The following lemma states the properties of ∧∗(·) and ∧(·) that are needed to prove the Theorem:

Lemma 3.1.

(1) ∧ is a convex function and ∧∗ is a convex rate function.
(2) If D∧ = {0}, then ∧∗ ≡ 0. If ∧(λ) < ∞ for some λ > 0, then x < ∞ (possibly x = −∞), and for all x � x,

∧∗(x) = sup
λ�0

[
λx − ∧(λ)

]
. (3)

Similarly, if ∧(λ) < ∞ for some λ < 0, then x > −∞ (possibly x = ∞), and for all x � x,

∧∗(x) = sup
λ�0

[
λx − ∧(λ)

]
. (4)

(3) When x is finite, ∧∗(x) = 0, and always

inf
x∈R

∧∗(x) = 0. (5)

Proof. (1) The convexity of ∧ follows by Hölder’s inequality, since

∧(
αλ1 + (1 − α)λ2

) = log E
[(

eλ1 X)α(
eλ2 X)1−α]

� log
(

E
[
eλ1 X ]α

E
[
eλ2 X ]1−α) = α∧(λ1) + (1 − α)∧(λ2)

for any α ∈ [0,1]. The convexity of ∧∗ follows from its notation, since
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α∧∗(x1) + (1 − α)∧∗(x2) = sup
λ∈R

[
αλx1 − α∧(λ)

] + sup
λ∈R

[
(1 − α)λx2 − (1 − α)∧(λ)

]

� sup
λ∈R

[
λ
(
αx1 + (1 − α)x2

) − ∧(λ)
] = ∧∗(αx1 + (1 − α)x2

)
.

Note that ∧(0) = 0, hence ∧∗(x) � 0x − ∧(0) = 0. In order to prove that ∧∗ is lower semicontinuous, fix a sequence xn → x.
Then, for every λ ∈ R ,

lim inf
xn→x

∧∗(xn) � lim inf
xn→x

[
λxn − ∧(λ)

] = λx − ∧(λ).

So lim infxn→x ∧∗(xn) � ∧∗(x). By the definition of rate function (see Dembo and Zeitouni [2, p. 4]), we know that ∧∗ is a
rate function.

(2) If D∧ = {0}, then ∧∗(x) = ∧(0) = 0 for all x ∈ R . If ∧(λ) = log E[eλX ] < ∞ for some λ > 0, then E[X+] =
supQ ∈P

∫
Ω

X+ dQ � E[eλX ]
λ

< ∞, implying that x < ∞ (possibly x = −∞). Now, for all λ ∈ R , by Jensen’s Inequality,

∧(λ) = log E
[
eλX ]

� E
[
log eλX] = E[λX] � λx.

If x = −∞, then ∧(λ) = ∞ for λ < 0, and (3) trivially holds. When x is finite, it follows from the preceding inequality that
∧∗(x) = 0. In this case, for every x � x and every λ < 0, λx−∧(λ) � λx−∧(λ) � ∧∗(x) = 0, so (3) holds. In a similar manner,
we can prove the rest of (2).

(3) It remains to prove that infx∈R ∧∗(x) = 0. This is already established for D∧ = {0}, in which case ∧∗ ≡ 0, and when x
is finite, in which case, as shown before, ∧∗(x) = 0. Now, consider the case when x = −∞ while ∧(λ) < ∞ for some λ > 0.
Then, by Chebycheff’s inequality and (3), we have

log V
(

X ∈ [x,∞)
)
� inf

λ�0
log E

[
eλ(X−x)] = − sup

λ�0

{
λx − ∧(λ)

} = −∧∗(x).

Thus, applying (H2),

lim
x→−∞∧∗(x) � lim

x→−∞
[− log V

(
X ∈ [x,∞)

)] = 0,

and (5) follows. The last remaining case, that of x = ∞ while ∧(λ) < ∞ for some λ < 0 can be proved in a similar manner
of the above. �
Remark 3.1. By the proof of Lemma 3.1(2), we know that if x < ∞, then for all x � x, (3) also holds and if x > −∞, then for
all x � x, (4) also holds.

Proof of Theorem. Let F be a non-empty closed set. When M F := infx∈F ∧∗(x) = 0, (∗) trivially holds. Assume that M F > 0.
For all x and every λ � 0, by Chebycheff’s inequality and Definitions 2.2 and 2.3, we have

V
(

Sn ∈ [x,∞)
)
� E

[
enλ(Sn−x)] = e−nλx

n∏
i=1

E
[
eλXi

] = e−n[λx−∧(λ)]. (6)

Therefore, if x < ∞, then by (3), for every x > x,

V
(

Sn ∈ [x,∞)
)
� e−n∧∗(x). (7)

By a similar argument, if x > −∞ and x < x, then

V
(

Sn ∈ (−∞, x]) � e−n∧∗(x). (8)

First, consider the case of x finite. Then ∧∗(x) = 0, and because by assumption M F > 0, x must be contained in the open
set F c . Let (x−, x+) be the union of all open intervals (a,b) ∈ F c that contain x. Note that x− < x+ and that either x− or
x+ must be finite since F is non-empty. If x− is finite, then x− ∈ F and consequently ∧∗(x−) � M F . Likewise, ∧∗(x+) � M F

whenever x+ is finite. Applying (7) and (8), we have

V (Sn ∈ F ) � V
(

Sn ∈ (−∞, x−]) + V
(

Sn ∈ [x+,∞)
)
� 2e−nM F .

So as n → ∞, (∗) holds.
Suppose now that x = −∞. Then since ∧∗ is nondecreasing, it follows from (5) that limx→−∞ ∧∗(x) = 0, and hence

x+ = inf{x: x ∈ F } is finite for otherwise M F = 0. Since F is a closed set, x+ ∈ F and consequently ∧∗(x+) � M F . Note that
F ⊂ [x+,∞), hence (∗) holds by applying (7) for x = x+ .

The case of x = ∞ is handled analogously. �
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Remark 3.2. (1) A close inspection of the proof reveals that the assumptions (A) (i.e., the random sequence {Xn; n � 1}
is identically distributed) and (B) (i.e., each Xn+1 is independent of (X1, . . . , Xn) for n = 1,2, . . .) can be replaced by the
weaker assumptions (A′) that the random sequence {Xn; n � 1} is identically distributed with respect to the continuous
functions ϕλ(x) = eλx , ∀λ ∈ R and ϕ(x) = −x and (B′) that each Xn+1 is independent of (X1, . . . , Xn) with respect to the

continuous functions ϕλ(x1, . . . , xn, xn+1) = eλ
∑n+1

i=1 xi , ∀λ ∈ R , n = 1,2, . . . .
(2) Under the assumptions of Theorem, for any open set G ⊂ R , does lim infn→∞ 1

n log V (Sn ∈ G) � − infx∈G ∧∗(x) hold?
The answer is negative. Now we give a counterexample. Let P = {P1, P2}. Assume that Xi ≡ M , M > 0, i = 1,2, . . . , in
probability measure P1 and Xi ≡ 2M , i = 1,2, . . . , in probability measure P2. Obviously, (A′) and (B′) are satisfied. We
choose G = (M,2M). By a simple computation, 1

n log V (Sn ∈ G) = −∞, for each n, but infx∈G ∧∗(x) = 0. Hence for G =
(M,2M), lim infn→∞ 1

n log V (Sn ∈ G) < − infx∈G ∧∗(x).
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