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In this Note, we prove the Liouville type result for smooth positive solutions to the
Lichnerowicz equation in Rn . Using the same method, we also give the uniform bound
of the smooth solutions to Ginzburg–Landau equation in the whole space. Similar results
on a complete non-compact Riemannian manifold with the Ricci curvature bounded from
below are also considered.
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r é s u m é

Dans cette Note on démontre un résultat de type de Liouville des solutions régulières pour
l’équation de Lichnerowicz dans Rn . En utilisant la même méthode on détermine également
une borne uniforme inférieure des solutions régulières pour l’équation de Ginzburg–
Landau dans tout l’espace. Des résultats analogues sont donnés dans le cas d’une variété
riemannienne non compacte complète de courbure de Ricci bornée inférieurement.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the recent interesting paper [2], the authors have proved an existence result for the Lichnerowicz equation on closed
Riemannian manifolds by the mini-max method. Then Druet and Hebey [1] have further considered the stability problems
for the Lichnerowicz equation on closed Riemannian manifolds. It is also interesting to consider the Lichnerowicz equation
in complete non-compact Riemannian manifolds. In our previous paper [3], we have proposed the question if the Liouville
type result is true for smooth positive solutions to the Lichnerowicz equation in Rn . Using the idea from Redheffer (see the
paper of Serrin [4]), we confirm this assertion.

Our Liouville type result follows:

Theorem 1. Let u > 0 be a smooth positive solution to the Lichnerowicz equation in Rn:

�u = up−1 − u−p−1, in Rn, (1)

where p > 1. Then u = 1.
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The proof of this result is simple and we give it here: Recall that we have already showed that every smooth positive solution
to (2) is bounded [3]. Let f (u) = uq − u−p−1 for some q > 1 and p > 1. Then f (u) is monotone non-decreasing.

For any fixed ε > 0 and arbitrary point x0 ∈ Rn , we let

w(x) := w R(x) = u(x) − u(x0) + ε − ε|x − x0|2.
Since w(x) → −∞ as |x| → ∞ and w(x0) = ε , we know that there is a point y ∈ Rn such that

w(y) = max
Rn

w(x) � ε.

By this, we have u(y) � u(x0) − ε . Since 0 � �w(y) = �u(y) − 2nε , we get

2nε � �u(y) � f
(
u(y)

)
.

Since the derivative f ′(u) > 0 for u > 0, we have

f
(
u(y)

)
� f

(
u(x0) − ε

)
.

Then we have

2nε � f
(
u(x0) − ε

)
.

Sending ε → 0 we have

f
(
u(x0)

)
� 0.

Similarly, the minimum of the function

v R(x) = u(x) − u(x0) − ε + ε|x − x0|2,
we can show that

f
(
u(x0)

)
� 0.

Hence we have f (u(x0)) = 0, which implies that u(x0) = 1. Since x0 ∈ Rn is arbitrary, we know that u = 1. This completes
the proof of Theorem 1.

We remark that the similar Liouville type result is also true for smooth positive solutions for the Lichnerowicz equation
in a complete non-compact Riemannian manifold with the Ricci curvature bounded from below.

Theorem 2. Let u > 0 be a smooth positive solution to the Lichnerowicz equation in the complete non-compact Riemannian manifold
(Mn, g) with the Ricci curvature bounded from below:

�u = up−1 − u−p−1, in Mn, (2)

where p > 1. Then u = 1.

The only difference is that we use the existence of a smooth function φ ∈ C2(M) [5] such that

c−1(1 + d(x, x0)
)
� φ(x) � C

(
1 + d(x, x0)

)
,

∣∣∇φ(x)
∣∣ � C,

and �φ(x) � C , where C > 0 is a uniform constant, d(x, x0) is the distance function of (M, g) between two points x and x0.
We just replace ε|x − x0|2 by ε2φ(x).

In the remaining part of this paper, we show that this kind idea can be used to prove the bounded-ness of the smooth
solutions to the famous Ginzburg–Landau equation in Rn . Precisely, we consider the smooth solutions u to the Ginzburg–
Landau equation

�u + u
(
1 − |u|2) = 0, in Rn (3)

where u : Rn → RN . We shall prove the following result due to H. Brezis (and I thank Dr. Yuxin Ge for telling me this result
in his note in Paris in 2004):

Theorem 3. Assume that u ∈ C2(Rn) is a smooth solution to (3). Then we have |u(x)| � 1 in Rn.

Similarly, we have
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Theorem 4. Consider the Ginzburg–Landau equation on the complete non-compact Riemannian manifold (M, g) with the Ricci cur-
vature bounded from below

�u + u
(
1 − |u|2) = 0, in Mn (4)

where u : Mn → RN .
Assume that u ∈ C2(Mn) is a smooth solution to (4). Then we have |u(x)| � 1 in Mn.

Since the argument of Theorem 4 is similar to Theorem 3, we omit the proof.

2. Proof of Theorem 3

We firstly show that u is bounded in Rn .
For any unit vector ν ∈ S N−1, we define v = ν · u. Then we have

�v + v
(
1 − |u|2) = 0, in Rn.

Let V = v2. Then, using |u|2 � V , we have

�V � 2v�v � −2V (1 − V ), in Rn.

Given any small R > 0 and large α > 1. Let

w(x) := w R(x) = (
R2 − |x − x0|2

)−α
.

By direct computation, we can see that

�w + 2w(1 − w) � 0, in B R(x0).

Since w(x) = +∞, we get by the comparison lemma that

v2(x) = V (x) � w(x), in B R(x0).

Then we have some uniform constant C(R) > 0 such that
∣
∣v(x)

∣
∣ � C(R), in B R/2(x0).

Since x0 and ν ∈ S N−1 are arbitrary, we have that
∣∣u(x)

∣∣ � C(R), in Rn.

We now prove |u(x)| � 1 on Rn . We argue by contradiction. Let F (v) = v(1 − v2).
Case 1. Assume that we have a point x0 ∈ Rn such that v(x0) > 1. Note that for v(x) > 0, we have

�v + v
(
1 − v2) � 0, in Rn.

For small ε > 0, we let

W1(x) := v(x) − v(x0) + ε − ε|x − x0|2.
Since W1(x) → −∞ as |x| → ∞ and W1(x0) = ε , we know that there is a point y ∈ Rn such that

W1(y) = max
Rn

W1(x) � ε.

By this, we have v(y) � v(x0) − ε > 0.
Since 0 � �W1(y) = �v(y) − 2nε , we get

2nε � �v(y) � −F
(

v(y)
)
.

Since the derivative −F ′(v) > 0 for |v| > 1, we have

−F
(

v(y)
)
� −F

(
v(x0) − ε

)
.

Then we have

2nε � −F
(

v(x0) − ε
)
.

Sending ε → 0 we have
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∣
∣v(x0)

∣
∣2

v(x0) � v(x0)

which implies that v(x0) � 1, a contradiction.
Case 2. Assume that we have a point x0 ∈ Rn such that v(x0) < −1.
Note that for v(x) < 0, we have

�v + v
(
1 − v2) � 0, in Rn.

For small ε > 0, we let

W2(x) := v(x) − v(x0) − ε + ε|x − x0|2.
Since W2(x) → +∞ as |x| → ∞ and W2(x0) = −ε , we know that there is a point z ∈ Rn such that

W2(z) = min
Rn

W2(x) � −ε.

By this, we have v(z) � v(x0) + ε < 0.
Since 0 � �W2(z) = �v(z) + 2nε , we get

−2nε � �v(z) � −F
(

v(z)
)
.

Since the derivative −F ′(v) > 0 for |v| > 1, we have

−F
(

v(z)
)
� −F

(
v(x0) + ε

)
.

Then we have

−2nε � −F
(

v(x0) + ε
)
.

Sending ε → 0 we have

v(x0) �
∣
∣v(x0)

∣
∣2

v(x0),

which implies that v(x0) � −1, again, a contradiction.
Hence |v(x0)| � 1 for arbitrary x0 ∈ Rn and arbitrary ν ∈ S N−1. We then conclude that |u(x)| � 1 in Rn . This completes

the proof of our Theorem 3.
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